
Robert L Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8674922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Research Reviews, 1997, 23, 79-133.	9.0	714
2	Visible burrow system as a model of chronic social stress: Behavioral and neuroendocrine correlates. Psychoneuroendocrinology, 1995, 20, 117-134.	2.7	452
3	Stress response, adrenal steroid receptor levels and corticosteroid-binding globulin levels — a comparison between Sprague-Dawley, Fischer 344 and Lewis rats. Brain Research, 1993, 616, 89-98.	2.2	263
4	A users guide to HPA axis research. Physiology and Behavior, 2017, 178, 43-65.	2.1	260
5	Adrenal steroid type I and type II receptor binding: estimates of in vivo receptor number, occupancy, and activation with varying level of steroid. Brain Research, 1990, 514, 37-48.	2.2	232
6	Adaptation to Prolonged or Repeated Stress – Comparison between Rat Strains Showing Intrinsic Differences in Reactivity to Acute Stress. Neuroendocrinology, 1997, 65, 360-368.	2.5	224
7	Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Research, 1991, 554, 312-315.	2.2	193
8	Dexamethasone suppression of corticosteroid secretion: evaluation of the site of action by receptor measures and functional studies. Psychoneuroendocrinology, 2000, 25, 151-167.	2.7	186
9	Regulation of Hippocampal Glucocorticoid Receptor Gene Transcription and Protein Expression <i>In Vivo </i> . Journal of Neuroscience, 1998, 18, 7462-7473.	3.6	183
10	Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Research, 1993, 616, 65-70.	2.2	154
11	Adaptation of the Hypothalamic-Pituitary-Adrenal Axis to Chronic Ethanol Stress. Neuroendocrinology, 1990, 52, 481-489.	2.5	150
12	Corticosterone regulation of Type I and Type II adrenal steroid receptors in brain, pituitary, and immune tissue. Brain Research, 1991, 549, 236-246.	2.2	149
13	Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learning and Memory, 2008, 15, 899-908.	1.3	149
14	Evidence for Mineralocorticoid Receptor Facilitation of Glucocorticoid Receptor-Dependent Regulation of Hypothalamic-Pituitary-Adrenal Axis Activity*. Endocrinology, 1998, 139, 2718-2726.	2.8	142
15	Adrenal steroid receptor activation in rat brain and pituitary following dexamethasone: Implications for the dexamethasone suppression test. Biological Psychiatry, 1992, 32, 850-869.	1.3	129
16	Diurnal expression of functional and clock-related genes throughout the rat HPA axis: system-wide shifts in response to a restricted feeding schedule. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E888-E897.	3.5	110
17	Glucocorticoid Receptors Are Differentially Expressed in the Cells and Tissues of the Immune System. Cellular Immunology, 1998, 186, 45-54.	3.0	107
18	Short-term treadmill running in the rat: what kind of stressor is it?. Journal of Applied Physiology, 2007. 103. 1979-1985.	2.5	103

ROBERT L SPENCER

#	Article	IF	CITATIONS
19	Prior stressor exposure primes the HPA axis. Psychoneuroendocrinology, 2002, 27, 353-365.	2.7	102
20	Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Research, 2005, 1051, 90-99.	2.2	93
21	Discrimination between changes in glucocorticoid receptor expression and activation in rat brain using western blot analysis. Brain Research, 2000, 868, 275-286.	2.2	91
22	Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. Journal of Biological Rhythms, 2015, 30, 417-436.	2.6	86
23	Rapid Corticosteroid-Dependent Regulation of Mineralocorticoid Receptor Protein Expression in Rat Brain. Endocrinology, 2002, 143, 4184-4195.	2.8	83
24	Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Frontiers in Neuroendocrinology, 2018, 49, 52-71.	5.2	79
25	Defense of Adrenocorticosteroid Receptor Expression in Rat Hippocampus: Effects of Stress and Strain1. Endocrinology, 1999, 140, 3981-3991.	2.8	71
26	Neonatal Handling Enhances Contextual Fear Conditioning and Alters Corticosterone Stress Responses in Young Rats. Hormones and Behavior, 2002, 41, 33-40.	2.1	68
27	Long-term changes in mineralocorticoid and glucocorticoid receptor occupancy following exposure to an acute stressor. Brain Research, 1999, 847, 211-220.	2.2	64
28	Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiology of Aging, 2015, 36, 1483-1495.	3.1	62
29	Depression, Adrenal Steroids, and the Immune System. Annals of Medicine, 1993, 25, 481-487.	3.8	56
30	Evidence that brief stress may induce the acute phase response in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1998-R2004.	1.8	56
31	Repeated Ferret Odor Exposure Induces Different Temporal Patterns of Same-Stressor Habituation and Novel-Stressor Sensitization in Both Hypothalamic-Pituitary-Adrenal Axis Activity and Forebrain c-fos Expression in the Rat. Endocrinology, 2009, 150, 749-761.	2.8	53
32	Immediate-early gene induction in hippocampus and cortex as a result of novel experience is not directly related to the stressfulness of that experience. European Journal of Neuroscience, 2005, 22, 1679-1690.	2.6	49
33	Evidence for Mineralocorticoid Receptor Facilitation of Glucocorticoid Receptor-Dependent Regulation of Hypothalamic-Pituitary-Adrenal Axis Activity. Endocrinology, 1998, 139, 2718-2726.	2.8	47
34	Water maze performance of aged Sprague-Dawley rats in relation to retinal morphologic measures. Behavioural Brain Research, 1995, 68, 139-150.	2.2	45
35	Effects of viral infection on corticosterone secretion and glucocorticoid receptor binding in immune tissues. Psychoneuroendocrinology, 1997, 22, 455-474.	2.7	45
36	Surgical and pharmacological suppression of glucocorticoids prevents the enhancement of morphine conditioned place preference by uncontrollable stress in rats. Psychopharmacology, 2005, 179, 409-417.	3.1	42

ROBERT L SPENCER

#	Article	IF	CITATIONS
37	Diurnal Corticosterone Presence and Phase Modulate Clock Gene Expression in the Male Rat Prefrontal Cortex. Endocrinology, 2016, 157, 1522-1534.	2.8	40
38	Changes at multiple levels of the hypothalamo-pituitary adrenal axis following repeated electrically induced seizures. Psychoneuroendocrinology, 1990, 15, 165-172.	2.7	38
39	Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats. Behavioural Brain Research, 1995, 68, 151-158.	2.2	38
40	Evaluation of RU28318 and RU40555 as selective mineralocorticoid receptor and glucocorticoid receptor antagonists, respectively: receptor measures and functional studies. Journal of Steroid Biochemistry and Molecular Biology, 1998, 67, 213-222.	2.5	38
41	Stress-Induced Sensitization of the Hypothalamic-Pituitary Adrenal Axis Is Associated with Alterations of Hypothalamic and Pituitary Gene Expression. Neuroendocrinology, 2004, 80, 252-263.	2.5	38
42	Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval. Frontiers in Behavioral Neuroscience, 2011, 5, 30.	2.0	38
43	Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology, 2016, 67, 40-50.	2.7	37
44	Effects of photoperiod on brain corticosteroid receptors and the stress response in the golden hamster (Mesocricetus auratus). Brain Research, 1998, 780, 348-351.	2.2	36
45	Corticosteroid Receptors in Brain: Relationship of Receptors to Effects in Stress and Aging. Annals of the New York Academy of Sciences, 1987, 512, 394-401.	3.8	34
46	Diazepam attenuation of restraint stress-induced corticosterone levels is enhanced by prior exposure to repeated restraint. Psychoneuroendocrinology, 1997, 22, 349-360.	2.7	33
47	The role of glucocorticoids in the uncontrollable stress-induced potentiation of nucleus accumbens shell dopamine and conditioned place preference responses to morphine. Psychoneuroendocrinology, 2006, 31, 653-663.	2.7	33
48	Differential glucocorticoid effects on stress-induced gene expression in the paraventricular nucleus of the hypothalamus and ACTH secretion in the rat. Stress, 2009, 12, 400-411.	1.8	32
49	Centrally-administered opioid selective agonists inhibit drinking in the rat. Pharmacology Biochemistry and Behavior, 1986, 25, 77-82.	2.9	31
50	Impaired Adaptation of the Hypothalamic-Pituitary-Adrenal Axis to Chronic Ethanol Stress in Aged Rats. Neuroendocrinology, 1997, 65, 353-359.	2.5	28
51	Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neuroscience and Biobehavioral Reviews, 2020, 118, 134-162.	6.1	28
52	Adrenal-dependent diurnal modulation of conditioned fear extinction learning. Behavioural Brain Research, 2015, 286, 249-255.	2.2	27
53	Glucocorticoid Fast Feedback Inhibition of Stress-Induced ACTH Secretion in the Male Rat: Rate Independence and Stress-State Resistance. Endocrinology, 2016, 157, 2785-2798.	2.8	27
54	Dynamic glucocorticoid-dependent regulation of Sgk1 expression in oligodendrocytes of adult male rat brain by acute stress and time of day. PLoS ONE, 2017, 12, e0175075.	2.5	25

ROBERT L SPENCER

#	Article	IF	CITATIONS
55	Development of the circadian system in early life: maternal and environmental factors. Journal of Physiological Anthropology, 2022, 41, 22.	2.6	25
56	Inescapable but not escapable stress leads to increased struggling behavior and basolateral amygdala c-fos gene expression in response to subsequent novel stress challenge. Neuroscience, 2010, 170, 138-148.	2.3	24
57	Defense of Adrenocorticosteroid Receptor Expression in Rat Hippocampus: Effects of Stress and Strain. Endocrinology, 1999, 140, 3981-3991.	2.8	24
58	Analysis of c-Fos induction in response to social interaction in male and female Fisher 344 rats. Brain Research, 2017, 1672, 113-121.	2.2	23
59	The expression of growth-associated protein GAP-43 mRNA in the rat hippocampus in response to adrenalectomy and aging. Molecular and Cellular Neurosciences, 1992, 3, 529-535.	2.2	21
60	A working model for the assessment of disruptions in social behavior among aged rats: The role of sex differences, social recognition, and sensorimotor processes. Experimental Gerontology, 2016, 76, 46-57.	2.8	20
61	Altered Entrainment to the Day/Night Cycle Attenuates the Daily Rise in Circulating Corticosterone in the Mouse. PLoS ONE, 2014, 9, e111944.	2.5	20
62	The relationship between cannabis use and cortisol levels in youth at ultra high-risk for psychosis. Psychoneuroendocrinology, 2017, 83, 58-64.	2.7	19
63	The Effects of Aging and Hormonal Manipulation on Amyloid Precursor Protein APP695 mRNA Expression in the Rat Hippocampus. Journal of Neuroendocrinology, 1994, 6, 517-521.	2.6	18
64	Adrenal-dependent and -independent stress-induced <i>Per1</i> mRNA in hypothalamic paraventricular nucleus and prefrontal cortex of male and female rats. Stress, 2018, 21, 69-83.	1.8	17
65	Coordination between Prefrontal Cortex Clock Gene Expression and Corticosterone Contributes to Enhanced Conditioned Fear Extinction Recall. ENeuro, 2018, 5, ENEURO.0455-18.2018.	1.9	16
66	Circadian misalignment has differential effects on affective behavior following exposure to controllable or uncontrollable stress. Behavioural Brain Research, 2019, 359, 440-445.	2.2	16
67	An unexpected increase in restraint duration alters the expression of stress response habituation. Physiology and Behavior, 2013, 122, 193-200.	2.1	15
68	Role of the dorsomedial hypothalamus in glucocorticoid-mediated feedback inhibition of the hypothalamic–pituitary–adrenal axis. Stress, 2015, 18, 76-87.	1.8	15
69	Acute Exposure to a Novel Stressor Further Reduces the Habituated Corticosterone Response to Restraint in Rats. Stress, 2001, 4, 319-331.	1.8	13
70	Sex differences in morning cortisol in youth at ultra-high-risk for psychosis. Psychoneuroendocrinology, 2016, 72, 87-93.	2.7	10
71	Acute Physiological and Psychological Stress Response in Youth at Clinical High-Risk for Psychosis. Frontiers in Psychiatry, 2021, 12, 641762.	2.6	9
72	TORC: A New Twist on Corticotropin-Releasing Hormone Gene Expression. Endocrinology, 2010, 151, 855-858.	2.8	7

5

#	Article	IF	CITATIONS
73	Reflections on Bruce S. McEwen's contributions to stress neurobiology and so much more. Stress, 2020, 23, 499-508.	1.8	7
74	Maintenance of Basal ACTH Levels by Corticosterone and RU28362, but not Aldosterone: Relationship to Available Type I and Type II Corticosteroid Receptor Levels in Brain and Pituitary. Stress, 1997, 2, 51-64.	1.8	5
75	Association between Altered Cortisol Profiles and Neurobehavioral Impairment after Mild Traumatic Brain Injury in College Students. Journal of Neurotrauma, 2022, 39, 809-820.	3.4	4
76	CRTC2 activation in the suprachiasmatic nucleus, but not paraventricular nucleus, varies in a diurnal fashion and increases with nighttime light exposure. American Journal of Physiology - Cell Physiology, 2014, 307, C611-C621.	4.6	2
77	Iterative Metaplasticity Across Timescales: How Circadian, Ultradian, and Infradian Rhythms Modulate Memory Mechanisms. Journal of Biological Rhythms, 2022, 37, 29-42.	2.6	2