List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8674605/publications.pdf Version: 2024-02-01

Hediredt Hidt

#	Article	IF	CITATIONS
1	In vivo identification of putative CPK5 substrates in Arabidopsis thaliana. Plant Science, 2022, 314, 111121.	1.7	6
2	Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends in Plant Science, 2022, 27, 802-813.	4.3	43
3	ROS homeostasis mediated by MPK4 and SUMM2 determines synergid cell death. Nature Communications, 2022, 13, 1746.	5.8	18
4	The Lysâ€motif receptor <scp><i>LYK4</i></scp> mediates <i>Enterobacter</i> sp. <scp>SA187</scp> triggered salt tolerance in <i>Arabidopsis thaliana</i> . Environmental Microbiology, 2022, 24, 223-239.	1.8	4
5	Analysis of the Arabidopsis <i>coilin</i> mutant reveals a positive role of AtCOILIN in plant immunity. Plant Physiology, 2022, 190, 745-761.	2.3	6
6	Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Reports, 2021, 22, e51049.	2.0	71
7	Complete Genome Sequence of Cellulomonas sp. JZ18, a Root Endophytic Bacterium Isolated from the Perennial Desert Tussock-Grass Panicum turgidum. Current Microbiology, 2021, 78, 1135-1141.	1.0	4
8	The Seed Development Factors TT2 and MYB5 Regulate Heat Stress Response in Arabidopsis. Genes, 2021, 12, 746.	1.0	13
9	G3BPs in Plant Stress. Frontiers in Plant Science, 2021, 12, 680710.	1.7	6
10	Stomatal regulation: Role of H2S-induced persulfidation in ABA signaling. Molecular Plant, 2021, 14, 858-860.	3.9	8
11	Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in <i>Arabidopsis</i> . Genome Research, 2021, 31, 1230-1244.	2.4	36
12	Multiple strategies of plant colonization by beneficial endophytic <scp><i>Enterobacter</i></scp> sp. <scp>SA187</scp> . Environmental Microbiology, 2021, 23, 6223-6240.	1.8	10
13	Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
14	Development, validation, and application of an HPLC-MS/MS method for quantification of oxidized fatty acids in plants. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1186, 123006.	1.2	2
15	Coordinated bacterial and plant sulfur metabolism in <i>Enterobacter</i> sp. SA187–induced plant salt stress tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
16	CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against <i>Pseudomonas syringae</i> . Plant Physiology, 2020, 182, 1052-1065.	2.3	7
17	Desert Microbes for Boosting Sustainable Agriculture in Extreme Environments. Frontiers in Microbiology, 2020, 11, 1666.	1.5	87
18	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	6.5	44

#	Article	lF	CITATIONS
19	Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. Journal of Experimental Botany, 2020, 71, 3878-3901.	2.4	118
20	Complete genome sequence of the endophytic bacterium Cellulosimicrobium sp. JZ28 isolated from the root endosphere of the perennial desert tussock grass Panicum turgidum. Archives of Microbiology, 2020, 202, 1563-1569.	1.0	8
21	Complete Genome Sequence of Paenibacillus sp. JZ16, a Plant Growth Promoting Root Endophytic Bacterium of the Desert Halophyte Zygophyllum Simplex. Current Microbiology, 2020, 77, 1097-1103.	1.0	15
22	Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biology, 2020, 21, 104.	3.8	99
23	Nanofabrication of Isoporous Membranes for Cell Fractionation. Scientific Reports, 2020, 10, 6138.	1.6	22
24	Wounding and Insect Feeding Trigger Two Independent MAPK Pathways with Distinct Regulation and Kinetics. Plant Cell, 2020, 32, 1988-2003.	3.1	61
25	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. PLoS Pathogens, 2020, 16, e1008401.	2.1	38
26	Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Frontiers in Microbiology, 2020, 11, 369.	1.5	39
27	Healthy soils for healthy plants for healthy humans. EMBO Reports, 2020, 21, e51069.	2.0	60
28	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
29	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
30	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
31	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
32	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
33	Phosphorylation regulates the activity of INDETERMINATE-DOMAIN (IDD/BIRD) proteins in response to diverse environmental conditions. Plant Signaling and Behavior, 2019, 14, e1642037.	1.2	7
34	Piriformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Scientia Horticulturae, 2019, 256, 108532.	1.7	97
35	The Polycomb protein <scp>LHP</scp> 1 regulates <i>Arabidopsis thaliana</i> stress responses through the repression of the <scp>MYC</scp> 2â€dependent branch of immunity. Plant Journal, 2019, 100, 1118-1131.	2.8	52
36	Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genomics, 2019, 20, 696.	1.2	7

#	Article	IF	CITATIONS
37	INDETERMINATE-DOMAIN 4 (IDD4) coordinates immune responses with plant-growth in Arabidopsis thaliana. PLoS Pathogens, 2019, 15, e1007499.	2.1	17
38	OXI1 and DAD Regulate Light-Induced Cell Death Antagonistically through Jasmonate and Salicylate Levels. Plant Physiology, 2019, 180, 1691-1708.	2.3	30
39	A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. Plant and Cell Physiology, 2019, 60, 1536-1555.	1.5	17
40	MAP 4K4 associates with BIK 1 to regulate plant innate immunity. EMBO Reports, 2019, 20, e47965.	2.0	22
41	Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Scientific Reports, 2019, 9, 19254.	1.6	6
42	Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Scientific Reports, 2019, 9, 18154.	1.6	69
43	Phylogenetically diverse endophytic bacteria from desert plants induce transcriptional changes of tissue-specific ion transporters and salinity stress in Arabidopsis thaliana. Plant Science, 2019, 280, 228-240.	1.7	33
44	The Lamin-Like LITTLE NUCLEI 1 (LINC1) Regulates Pattern-Triggered Immunity and Jasmonic Acid Signaling. Frontiers in Plant Science, 2019, 10, 1639.	1.7	26
45	Plant Immunity: The MTI-ETI Model and Beyond. Current Issues in Molecular Biology, 2019, 30, 39-58.	1.0	31
46	Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.	0.6	194
47	Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Molecular and Cellular Proteomics, 2018, 17, 61-80.	2.5	80
48	Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE, 2018, 13, e0208223.	1.1	76
49	The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity. PLoS Genetics, 2018, 14, e1007708.	1.5	41
50	Plant Immunity: From Signaling to Epigenetic Control of Defense. Trends in Plant Science, 2018, 23, 833-844.	4.3	198
51	Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions. Frontiers in Plant Science, 2018, 9, 355.	1.7	106
52	Nuclear Signaling of Plant MAPKs. Frontiers in Plant Science, 2018, 9, 469.	1.7	168
53	Boosting Alfalfa (Medicago sativa L.) Production With Rhizobacteria From Various Plants in Saudi Arabia. Frontiers in Microbiology, 2018, 9, 477.	1.5	35
54	In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genomics, 2018, 19, 382.	1.2	17

#	Article	IF	CITATIONS
55	Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2â€ketoâ€4â€methylthiobutyric acid production. PLoS Genetics, 2018, 14, e1007273.	1.5	95
56	Quantification of Root Colonizing Bacteria. Bio-protocol, 2018, 8, .	0.2	3
57	The <i>Arabidopsis</i> homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity. Life Science Alliance, 2018, 1, e201800046.	1.3	16
58	Draft Genome Sequence of the Plant Growth–Promoting Rhizobacterium Acinetobacter radioresistens Strain SA188 Isolated from the Desert Plant Indigofera argentea. Genome Announcements, 2017, 5, .	0.8	5
59	Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant <i>Erodium hirtum</i> in Jordan. Genome Announcements, 2017, 5, .	0.8	9
60	Constitutively Active Arabidopsis MAP Kinase 3 Triggers Defense Responses Involving Salicylic Acid and SUMM2 Resistance Protein. Plant Physiology, 2017, 174, 1238-1249.	2.3	57
61	A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Research, 2017, 45, 5061-5073.	6.5	262
62	Draft Genome Sequence of Plant Growth–Promoting Micrococcus luteus Strain K39 Isolated from <i>Cyperus conglomeratus</i> in Saudi Arabia. Genome Announcements, 2017, 5, .	0.8	11
63	Review: Mitogen-Activated Protein Kinases in nutritional signaling in Arabidopsis. Plant Science, 2017, 260, 101-108.	1.7	70
64	Plant-Specific Histone Deacetylases HDT1/2 Regulate <i>GIBBERELLIN 2-OXIDASE2</i> Expression to Control Arabidopsis Root Meristem Cell Number. Plant Cell, 2017, 29, 2183-2196.	3.1	69
65	Constitutive activity of the Arabidopsis MAP Kinase 3 confers resistance to Pseudomonas syringae and drives robust immune responses. Plant Signaling and Behavior, 2017, 12, e1356533.	1.2	14
66	Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria. , 2017, , 125-143.		12
67	The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biology, 2017, 18, 114.	3.8	53
68	The heatâ€shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 2017, 15, 405-414.	4.1	513
69	Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium. Genome Announcements, 2017, 5, .	0.8	5
70	Draft Genome Sequence of <i>Enterobacter</i> sp. Sa187, an Endophytic Bacterium Isolated from the Desert Plant <i>Indigofera argentea</i> . Genome Announcements, 2017, 5, .	0.8	5
71	Complete Genome Sequence Analysis of Enterobacter sp. SA187, a Plant Multi-Stress Tolerance Promoting Endophytic Bacterium. Frontiers in Microbiology, 2017, 8, 2023.	1.5	83
72	MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity. Genome Biology, 2017, 18, 131.	3.8	73

#	Article	IF	CITATIONS
73	Draft Genome Sequence of Halomonas elongata Strain K4, an Endophytic Growth-Promoting Bacterium Enhancing Salinity Tolerance <i>In Planta</i> . Genome Announcements, 2016, 4, .	0.8	13
74	Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean. Frontiers in Plant Science, 2016, 7, 876.	1.7	178
75	Convergence of Multiple MAP3Ks on MKK3 Identifies a Set of Novel Stress MAPK Modules. Frontiers in Plant Science, 2016, 07, 1941.	1.7	35
76	Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant <i>Indigofera argentea</i> . Genome Announcements, 2016, 4, .	0.8	9
77	Draft Genome Sequence of the Plant Growth-Promoting <i>Cupriavidus gilardii</i> Strain JZ4 Isolated from the Desert Plant <i>Tribulus terrestris</i> . Genome Announcements, 2016, 4, .	0.8	17
78	The Role of MAPK Modules and ABA during Abiotic Stress Signaling. Trends in Plant Science, 2016, 21, 677-685.	4.3	326
79	Aquaporins Link ROS Signaling to Plant Immunity. Plant Physiology, 2016, 171, 1540-1540.	2.3	15
80	Interview with Heribert Hirt. Trends in Plant Science, 2016, 21, 1-2.	4.3	5
81	LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS ONE, 2016, 11, e0158936.	1.1	97
82	Bacterial Rhizosphere Biodiversity from Several Pioneer Desert Sand Plants Near Jizan, Saudi Arabia. The Open Conference Proceedings Journal, 2016, 7, 70-79.	0.6	4
83	A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS ONE, 2015, 10, e0138276.	1.1	25
84	Plant-Microbe Interactions and Water Management in Arid and Saline Soils. , 2015, , 265-276.		20
85	Signaling Mechanisms in Pattern-Triggered Immunity (PTI). Molecular Plant, 2015, 8, 521-539.	3.9	750
86	Identification and characterization of an <scp>ABA</scp> â€activated <scp>MAP</scp> kinase cascade in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 82, 232-244.	2.8	187
87	Plant MAPK cascades: Just rapid signaling modules?. Plant Signaling and Behavior, 2015, 10, e1062197.	1.2	23
88	Salmonella enterica induces and subverts the plant immune system. Frontiers in Microbiology, 2014, 5, 141.	1.5	31
89	Salmonella enterica Flagellin Is Recognized via FLS2 and Activates PAMP-Triggered Immunity in Arabidopsis thaliana. Molecular Plant, 2014, 7, 657-674.	3.9	75
90	The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Frontiers in Microbiology, 2014, 5, 548.	1.5	27

#	Article	IF	CITATIONS
91	Proteomic and phosphoproteomic analyses of chromatinâ€associated proteins from <i>Arabidopsis thaliana</i> . Proteomics, 2014, 14, 2141-2155.	1.3	18
92	Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. Journal of Experimental Botany, 2014, 65, 2335-2350.	2.4	37
93	The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances, 2014, 32, 40-52.	6.0	528
94	The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at <i>FLOWERING LOCUS C</i> in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 538-551.	3.1	82
95	Phosphorylationâ€dependent regulation of plant chromatin and chromatinâ€associated proteins. Proteomics, 2014, 14, 2127-2140.	1.3	26
96	Identification of Novel PAMP-Triggered Phosphorylation and Dephosphorylation Events in <i>Arabidopsis thaliana</i> by Quantitative Phosphoproteomic Analysis. Journal of Proteome Research, 2014, 13, 2137-2151.	1.8	44
97	Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. ELife, 2014, 3, .	2.8	205
98	Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences. Genome Biology, 2014, 15, R87.	13.9	137
99	Protein Complexes Characterization in Arabidopsis thaliana by Tandem Affinity Purification Coupled to Mass Spectrometry Analysis. Methods in Molecular Biology, 2014, 1171, 237-250.	0.4	3
100	The role of the kinase <scp>OXI1</scp> in cadmium―and copper―induced molecular responses in <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1228-1238.	2.8	50
101	Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance. Molecular Plant, 2013, 6, 242-245.	3.9	220
102	Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnology Advances, 2013, 31, 118-128.	6.0	124
103	New checkpoints in stomatal defense. Trends in Plant Science, 2013, 18, 295-297.	4.3	52
104	Constitutively active MPK4 helps to clarify its role in plant immunity. Plant Signaling and Behavior, 2013, 8, e22991.	1.2	7
105	An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis. PLoS Biology, 2013, 11, e1001513.	2.6	239
106	Brassinosteroid-regulated GSK3/Shaggy-like Kinases Phosphorylate Mitogen-activated Protein (MAP) Kinase Kinases, Which Control Stomata Development in Arabidopsis thaliana. Journal of Biological Chemistry, 2013, 288, 7519-7527.	1.6	152
107	Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Research, 2013, 41, 2907-2917.	6.5	35
108	Regulation of the heat stress response in <i>Arabidopsis</i> by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ, 2013, 1, e59.	0.9	106

#	Article	IF	CITATIONS
109	Constitutively Active Mitogen-Activated Protein Kinase Versions Reveal Functions of <i>Arabidopsis</i> MPK4 in Pathogen Defense Signaling. Plant Cell, 2012, 24, 4281-4293.	3.1	163
110	Automated Phosphopeptide Identification Using Multiple MS/MS Fragmentation Modes. Journal of Proteome Research, 2012, 11, 5695-5703.	1.8	16
111	Plants as alternative hosts for Salmonella. Trends in Plant Science, 2012, 17, 245-249.	4.3	92
112	Role of AGC kinases in plant growth and stress responses. Cellular and Molecular Life Sciences, 2012, 69, 3259-3267.	2.4	45
113	The <i>Arabidopsis</i> protein kinase Ptoâ€interacting 1â€4 is a common target of the oxidative signalâ€inducible 1 and mitogenâ€activated protein kinases. FEBS Journal, 2011, 278, 1126-1136.	2.2	50
114	Isolation and characterization of plant protein complexes by mass spectrometry. Proteomics, 2011, 11, 1824-1833.	1.3	23
115	Linking the proteins—Elucidation of proteomeâ€scale networks using mass spectrometry. Mass Spectrometry Reviews, 2011, 30, 268-297.	2.8	23
116	Conservation of Salmonella Infection Mechanisms in Plants and Animals. PLoS ONE, 2011, 6, e24112.	1.1	114
117	The OXI1 Kinase Pathway Mediates Piriformospora indica-Induced Growth Promotion in Arabidopsis. PLoS Pathogens, 2011, 7, e1002051.	2.1	126
118	AGC kinases in plant development and defense. Plant Signaling and Behavior, 2011, 6, 1030-1033.	1.2	24
119	New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO Journal, 2010, 29, 1021-1032.	3.5	216
120	Bioinformatic and Systems Biology Tools to Generate Testable Models of Signaling Pathways and Their Targets. Plant Physiology, 2010, 152, 460-469.	2.3	17
121	The MAP Kinase MPK4 Is Required for Cytokinesis in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2010, 22, 3778-3790.	3.1	185
122	Mechanism of MAPK-targeted gene expression unraveled in plants. Cell Cycle, 2010, 9, 18-19.	1.3	6
123	Transgenerational Stress Memory Is Not a General Response in Arabidopsis. PLoS ONE, 2009, 4, e5202.	1.1	142
124	VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18414-18419.	3.3	128
125	A Major Role of the MEKK1–MKK1/2–MPK4 Pathway in ROS Signalling. Molecular Plant, 2009, 2, 120-137.	3.9	250
126	Disentangling the Complexity of Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling. Plant Physiology, 2009, 149, 606-615.	2.3	120

#	Article	IF	CITATIONS
127	MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2884-2897.	3.1	216
128	MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 2009, 12, 421-426.	3.5	612
129	Protein tyrosine phosphorylation in plants: more abundant than expected?. Trends in Plant Science, 2009, 14, 71-76.	4.3	87
130	Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. Planta, 2008, 228, 499-509.	1.6	24
131	Protein networking: insights into global functional organization of proteomes. Proteomics, 2008, 8, 799-816.	1.3	74
132	Towards functional phosphoproteomics by mapping differential phosphorylation events in signaling networks. Proteomics, 2008, 8, 4453-4465.	1.3	51
133	Site-Specific Phosphorylation Profiling of <i>Arabidopsis</i> Proteins by Mass Spectrometry and Peptide Chip Analysis. Journal of Proteome Research, 2008, 7, 2458-2470.	1.8	139
134	<i>Arabidopsis</i> MAPKs: a complex signalling network involved in multiple biological processes. Biochemical Journal, 2008, 413, 217-226.	1.7	652
135	The Dark Side of the Salad: Salmonella typhimurium Overcomes the Innate Immune Response of Arabidopsis thaliana and Shows an Endopathogenic Lifestyle. PLoS ONE, 2008, 3, e2279.	1.1	142
136	The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2213-2224.	3.1	302
137	The <i>Arabidopsis</i> Mitogen-Activated Protein Kinase Kinase MKK3 Is Upstream of Group C Mitogen-Activated Protein Kinases and Participates in Pathogen Signaling. Plant Cell, 2007, 19, 3266-3279.	3.1	234
138	The MAP Kinase Kinase MKK2 Affects Disease Resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 2007, 20, 589-596.	1.4	108
139	Using phosphoproteomics to reveal signalling dynamics in plants. Trends in Plant Science, 2007, 12, 404-411.	4.3	63
140	Trojan Horse Strategy in <i>Agrobacterium</i> Transformation: Abusing MAPK Defense Signaling. Science, 2007, 318, 453-456.	6.0	251
141	A plastid-localized glycogen synthase kinase 3 modulates stress tolerance and carbohydrate metabolism. Plant Journal, 2007, 49, 1076-1090.	2.8	70
142	The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control. Current Biology, 2007, 17, 1116-1122.	1.8	356
143	Activation of members of a MAPK module in β-glucan elicitor-mediated non-host resistance of soybean. Planta, 2007, 225, 1559-1571.	1.6	41
144	Reactive Oxygen Species Signaling in Plants. Antioxidants and Redox Signaling, 2006, 8, 1757-1764.	2.5	300

#	Article	IF	CITATIONS
145	Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiologia Plantarum, 2006, 126, 110-119.	2.6	37
146	Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Research, 2006, 34, 3267-3278.	6.5	124
147	Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling in Plants. Plant Physiology, 2006, 141, 351-356.	2.3	199
148	Involvement of mitogen-activated protein kinases in the symbiosis Bradyrhizobium-Lupinus. Journal of Experimental Botany, 2006, 57, 2735-2742.	2.4	23
149	A Mitogen-activated Protein Kinase Kinase Kinase Mediates Reactive Oxygen Species Homeostasis in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 38697-38704.	1.6	311
150	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	3.5	480
151	The Membrane-Anchored BOTRYTIS-INDUCED KINASE1 Plays Distinct Roles in Arabidopsis Resistance to Necrotrophic and Biotrophic Pathogens. Plant Cell, 2005, 18, 257-273.	3.1	381
152	Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 2005, 10, 339-346.	4.3	617
153	Heavy Metal Stress. Activation of Distinct Mitogen-Activated Protein Kinase Pathways by Copper and Cadmium. Plant Physiology, 2004, 136, 3276-3283.	2.3	370
154	OMTK1, a Novel MAPKKK, Channels Oxidative Stress Signaling through Direct MAPK Interaction. Journal of Biological Chemistry, 2004, 279, 26959-26966.	1.6	141
155	OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 2004, 427, 858-861.	13.7	556
156	REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 2004, 55, 373-399.	8.6	9,281
157	Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science, 2004, 9, 236-243.	4.3	628
158	The MKK2 Pathway Mediates Cold and Salt Stress Signaling in Arabidopsis. Molecular Cell, 2004, 15, 141-152.	4.5	859
159	A MAPK pathway mediates ethylene signaling in plants. EMBO Journal, 2003, 22, 1282-1288.	3.5	288
160	Protein Phosphorylation and Cellular Information Transfer: Signaling by MAP Kinase Cascades. Monatshefte Für Chemie, 2003, 134, 1481-1487.	0.9	0
161	Involvement of MAP kinase SIMK and actin cytoskeleton in the regulation of root hair tip growth. Cell Biology International, 2003, 27, 257-259.	1.4	9
162	Stress-induced Protein Phosphatase 2C Is a Negative Regulator of a Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2003, 278, 18945-18952.	1.6	147

#	Article	IF	CITATIONS
163	From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. Journal of Experimental Botany, 2003, 55, 189-198.	2.4	85
164	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	4.3	1,080
165	Glycogen synthase kinase 3/SHACGY-like kinases in plants: an emerging family with novel functions. Trends in Plant Science, 2002, 7, 457-461.	4.3	114
166	Complexity, Cross Talk and Integration of Plant MAP Kinase Signalling. Current Opinion in Plant Biology, 2002, 5, 415-424.	3.5	650
167	Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant Journal, 2002, 31, 629-638.	2.8	328
168	A new blueprint for plant pathogen resistance. Nature Biotechnology, 2002, 20, 450-451.	9.4	10
169	Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO Journal, 2002, 21, 3296-3306.	3.5	152
170	Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell, 2002, 14, 703-11.	3.1	82
171	Phosphatidic acid activates a wound-activated MAPK in Glycine max. Plant Journal, 2001, 26, 479-486.	2.8	135
172	Plant MAP kinase pathways: how many and what for?. Biology of the Cell, 2001, 93, 81-87.	0.7	87
173	Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant Journal, 2000, 22, 147-154.	2.8	239
174	Stressing the role of MAP kinases in mitogenic stimulation. Plant Molecular Biology, 2000, 43, 705-718.	2.0	46
175	MAP kinase pathways: molecular plug-and-play chips for the cell. , 2000, 42, 791-806.		67
176	Salt stress induces changes in amounts and localization of the mitogen-activated protein kinase SIMK in alfalfa roots. Protoplasma, 2000, 212, 262-267.	1.0	17
177	Connecting oxidative stress, auxin, and cell cycle regulation through a plant mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2405-2407.	3.3	117
178	Differential Activation of Four Specific MAPK Pathways by Distinct Elicitors. Journal of Biological Chemistry, 2000, 275, 36734-36740.	1.6	142
179	Phytophthora parasitica Elicitor-Induced Reactions in Cells of Petroselinum Crispum. Plant and Cell Physiology, 2000, 41, 692-701.	1.5	49
180	Microbial Elicitors Induce Activation and Dual Phosphorylation of the Arabidopsis thaliana MAPK 6. Journal of Biological Chemistry, 2000, 275, 7521-7526.	1.6	276

#	Article	IF	CITATIONS
181	SIMKK, a Mitogen-Activated Protein Kinase (MAPK) Kinase, Is a Specific Activator of the Salt Stress–Induced MAPK, SIMK. Plant Cell, 2000, 12, 2247-2258.	3.1	187
182	Wound-Induced Expression and Activation of WIG, a Novel Glycogen Synthase Kinase 3. Plant Cell, 2000, 12, 1467-1475.	3.1	47
183	Rapid Avr9- and Cf-9–Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell, 1999, 11, 273-287.	3.1	458
184	Vicia faba germination: Synchronized cell growth and localization of nucleolin and α-tubulin Seed Science Research, 1999, 9, 297-304.	0.8	8
185	Unsaturated fatty acids inhibit MP2C, a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. Plant Journal, 1999, 20, 343-348.	2.8	45
186	Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant Journal, 1999, 20, 381-388.	2.8	179
187	Transcriptional upregulation of signaling pathways: more complex than anticipated?. Trends in Plant Science, 1999, 4, 7-8.	4.3	20
188	A MAP Kinase Is Activated Late in Plant Mitosis and Becomes Localized to the Plane of Cell Division. Plant Cell, 1999, 11, 101-113.	3.1	175
189	A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell, 1999, 11, 101-13.	3.1	51
190	The SAM kinase pathway: An integrated circuit for stress signaling in plants. Journal of Plant Research, 1998, 111, 339-344.	1.2	16
191	Evidence for the activation of a MAP kinase upon phosphate-induced cell cycle re-entry in tobacco cells. Physiologia Plantarum, 1998, 102, 532-538.	2.6	26
192	MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1938-1943.	3.3	170
193	Wounding Induces the Rapid and Transient Activation of a Specific MAP Kinase Pathway Plant Cell, 1997, 9, 75-83.	3.1	193
194	Receptor-Mediated Activation of a MAP Kinase in Pathogen Defense of Plants. Science, 1997, 276, 2054-2057.	6.0	369
195	Multiple roles of MAP kinases in plant signal transduction. Trends in Plant Science, 1997, 2, 11-15.	4.3	270
196	The cdc2Ms Kinase Is Differently Regulated in the Cytoplasm and in the Nucleus. Plant Physiology, 1997, 113, 841-852.	2.3	61
197	Developmental and cell cycle regulation of alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin Plant Cell, 1996, 8, 417-428.	3.1	64
198	Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11274-11279.	3.3	462

#	Article	IF	CITATIONS
199	Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Molecular Biology, 1996, 32, 1003-1018.	2.0	232
200	In and out of the plant cell cycle. Plant Molecular Biology, 1996, 31, 459-464.	2.0	19
201	Mechanosensors in plants. Nature, 1996, 383, 489-490.	13.7	105
202	Developmental and cell cycle regulation of alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin. Plant Cell, 1996, 8, 417-28.	3.1	27
203	MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. Molecular Genetics and Genomics, 1995, 248, 686-694.	2.4	61
204	Tyrosine phosphatase signalling in a lower plant: cell-cycle and oxidative stress-regulated expression of the Chlamydomonas eugametos VH-PTP13 gene. Plant Journal, 1995, 7, 981-988.	2.8	27
205	Inflorescence-specific expression of AtK-1, a novel Arabidopsis thaliana homologue of shaggy/glycogen synthase kinase-3. Plant Molecular Biology, 1995, 27, 217-221.	2.0	24
206	A cDNA from Medicago sativa Encodes a Protein Homologous to Small GTP-Binding Proteins. Plant Physiology, 1995, 107, 263-264.	2.3	6
207	The D-type alfalfa cyclin gene cycMs4 complements G1 cyclin-deficient yeast and is induced in the G1 phase of the cell cycle Plant Cell, 1995, 7, 1847-1857.	3.1	131
208	cycMs3, a Novel B-Type Alfalfa Cyclin Gene, Is Induced in the G 0 -to-G 1 Transition of the Cell Cycle. Plant Cell, 1995, 7, 759.	3.1	37
209	The cDNA Sequence Encoding an Annexin from Medicago sativa. Plant Physiology, 1994, 104, 1463-1464.	2.3	18
210	Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation Plant Cell, 1994, 6, 1415-1426.	3.1	195
211	The function of the hypusine-containing proteins of yeast and other eukaryotes is well conserved. Molecular Genetics and Genomics, 1994, 244, 646-652.	2.4	37
212	Isolation and characterization of phosphoprotein phosphatase 1 from alfalfa. Molecular Genetics and Genomics, 1994, 244, 176-182.	2.4	12
213	The plant transcription factor TGA1 stimulates expression of the CaMV 35S promoter in Saccharomyces cerevisiae. Plant Molecular Biology, 1994, 25, 323-328.	2.0	16
214	MAP kinases: universal multi-purpose signaling tools. Plant Molecular Biology, 1994, 24, 407-416.	2.0	77
215	Cell cycle regulation in higher plants. Seminars in Developmental Biology, 1994, 5, 147-154.	1.3	18
216	The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant Journal, 1993, 3, 611-617.	2.8	111

#	Article	IF	CITATIONS
217	cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants. Plant Journal, 1993, 4, 61-69.	2.8	73
218	Isolation and characterization of a phosphoprotein phosphatase type 2A gene from alfalfa. Molecular Genetics and Genomics, 1993, 240, 126-131.	2.4	23
219	TheMsKfamily of alfalfa protein kinase genes encodes homologues ofshaggy/glycogen synthase kinase-3and shows differential expression patterns in plant organs and development. Plant Journal, 1993, 3, 847-856.	2.8	34
220	Alfalfa Cyclins: Differential Expression during the Cell Cycle and in Plant Organs. Plant Cell, 1993, 5, 715-715.	3.1	1
221	An alfalfa cDNA encodes a protein with similarity to human snRNP-E. Nucleic Acids Research, 1992, 20, 613-613.	6.5	8
222	Alfalfa cyclins: differential expression during the cell cycle and in plant organs Plant Cell, 1992, 4, 1531-1538.	3.1	133
223	The cauliflower mosaic virus 35S promoter is regulated by cAMP in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1992, 235, 365-372.	2.4	15
224	An alfalfa cDNA encodes a protein with homology to translationally controlled human tumor protein. Plant Molecular Biology, 1992, 19, 501-503.	2.0	76
225	Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2 Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1636-1640.	3.3	202
226	Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Molecular Biology, 1991, 16, 999-1007.	2.0	133
227	Isolation and sequence determination of the plant homologue of the eukaryotic initiation factor 4D cDNA from alfalfa, Medicago sativa. Plant Molecular Biology, 1991, 17, 927-929.	2.0	21
228	A novel method for in situ screening of yeast colonies with the ?-glucuronidase reporter gene. Current Genetics, 1991, 20, 437-439.	0.8	12
229	Effects of Cadmium on Tobacco: Synthesis and Regulation of Cadmium-binding Peptides. Biochemie Und Physiologie Der Pflanzen, 1990, 186, 153-163.	0.5	8
230	Evolutionary conservation of transcriptional machinery between yeast and plants as shown by the efficient expression from the CaMV 35S promoter and 35S terminator. Current Genetics, 1990, 17, 473-479.	0.8	34
231	Cadmium-enhanced gene expression in suspension-culture cells of tobacco. Planta, 1989, 179, 414-420.	1.6	35
232	The Human Growth Hormone Gene Locus: Structure, Evolution, and Allelic Variations. DNA and Cell Biology, 1987, 6, 59-70.	5.1	138
233	Differential distribution of microtubule-associated proteins MAP-1 and MAP-2 in neurons of rat brain and association of MAP-1 with microtubules of neuroblastoma cells (clone N2A). EMBO Journal, 1983, 2, 1915-20.	3.5	24