List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673851/publications.pdf Version: 2024-02-01

ALAN M MOSES

#	Article	IF	CITATIONS
1	Population genomics of domestic and wild yeasts. Nature, 2009, 458, 337-341.	27.8	1,391
2	In vivo enhancer analysis of human conserved non-coding sequences. Nature, 2006, 444, 499-502.	27.8	1,072
3	NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics, 2009, 10, 202.	2.6	526
4	An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics, 2013, 45, 891-898.	21.4	350
5	A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular Biology and Evolution, 2014, 31, 872-888.	8.9	328
6	Widespread Discordance of Gene Trees with Species Tree in Drosophila: Evidence for Incomplete Lineage Sorting. PLoS Genetics, 2006, 2, e173.	3.5	319
7	Trait Variation in Yeast Is Defined by Population History. PLoS Genetics, 2011, 7, e1002111.	3.5	311
8	TreeFam: 2008 Update. Nucleic Acids Research, 2007, 36, D735-D740.	14.5	294
9	Revealing the genetic structure of a trait by sequencing a population under selection. Genome Research, 2011, 21, 1131-1138.	5.5	263
10	Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis. Cell, 2015, 161, 1413-1424.	28.9	254
11	Large-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila. PLoS Computational Biology, 2006, 2, e130.	3.2	231
12	Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi. PLoS Biology, 2004, 2, e398.	5.6	207
13	Short linear motifs – ex nihilo evolution of protein regulation. Cell Communication and Signaling, 2015, 13, 43.	6.5	171
14	Evidence for widespread adaptive evolution of gene expression in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2977-2982.	7.1	161
15	Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell, 2020, 183, 1742-1756.	28.9	147
16	MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model. Genome Biology, 2004, 5, R98.	9.6	134
17	Proteome-wide signatures of function in highly diverged intrinsically disordered regions. ELife, 2019, 8, .	6.0	131
18	Position specific variation in the rate of evolution in transcription factor binding sites. BMC Evolutionary Biology, 2003, 3, 19.	3.2	130

#	Article	IF	CITATIONS
19	Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell, 2020, 181, 818-831.e19.	28.9	130
20	Proteome-Wide Discovery of Evolutionary Conserved Sequences in Disordered Regions. Science Signaling, 2012, 5, rs1.	3.6	109
21	A Mesoscale Abscisic Acid Hormone Interactome Reveals a Dynamic Signaling Landscape in Arabidopsis. Developmental Cell, 2014, 29, 360-372.	7.0	109
22	Exploring whole-genome duplicate gene retention with complex genetic interaction analysis. Science, 2020, 368, .	12.6	79
23	Whole-Genome Analysis Reveals That Active Heat Shock Factor Binding Sites Are Mostly Associated with Non-Heat Shock Genes in Drosophila melanogaster. PLoS ONE, 2011, 6, e15934.	2.5	78
24	Cdk1 Controls Global Epigenetic Landscape in Embryonic Stem Cells. Molecular Cell, 2020, 78, 459-476.e13.	9.7	76
25	New <scp>BAR</scp> tools for mining expression data and exploring <i>Cis</i> â€elements in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 490-504.	5.7	75
26	Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. Genome Biology, 2007, 8, R23.	9.6	74
27	YeastSpotter: accurate and parameter-free web segmentation for microscopy images of yeast cells. Bioinformatics, 2019, 35, 4525-4527.	4.1	70
28	CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2015, 5, 1223-1232.	1.8	69
29	Learning unsupervised feature representations for single cell microscopy images with paired cell inpainting. PLoS Computational Biology, 2019, 15, e1007348.	3.2	69
30	Selection maintains signaling function of a highly diverged intrinsically disordered region. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1450-E1459.	7.1	65
31	Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17713-17718.	7.1	62
32	Evolution of Characterized Phosphorylation Sites in Budding Yeast. Molecular Biology and Evolution, 2010, 27, 2027-2037.	8.9	62
33	A quantitative literature-curated gold standard for kinase-substrate pairs. Genome Biology, 2011, 12, R39.	9.6	56
34	Moving from transcriptional to phospho-evolution: generalizing regulatory evolution?. Trends in Genetics, 2010, 26, 462-467.	6.7	48
35	Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. ELife, 2021, 10, .	6.0	47
36	The Structure of an NDR/LATS Kinase–Mob Complex Reveals a Novel Kinase–Coactivator System and Substrate Docking Mechanism. PLoS Biology, 2015, 13, e1002146.	5.6	45

#	Article	IF	CITATIONS
37	Turnover of protein phosphorylation evolving under stabilizing selection. Frontiers in Genetics, 2014, 5, 245.	2.3	43
38	Entropy and Information within Intrinsically Disordered Protein Regions. Entropy, 2019, 21, 662.	2.2	41
39	Detecting Functional Divergence after Gene Duplication through Evolutionary Changes in Posttranslational Regulatory Sequences. PLoS Computational Biology, 2014, 10, e1003977.	3.2	39
40	Polymorphism, Divergence, and the Role of Recombination in Saccharomyces cerevisiae Genome Evolution. Molecular Biology and Evolution, 2011, 28, 1745-1754.	8.9	36
41	A flexible repertoire of transcription factor binding sites and a diversity threshold determines enhancer activity in embryonic stem cells. Genome Research, 2021, 31, 564-575.	5.5	36
42	Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins. PLoS Computational Biology, 2013, 9, e1003085.	3.2	33
43	Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions. Genome Biology and Evolution, 2015, 7, 1815-1826.	2.5	27
44	Statistical tests for natural selection on regulatory regions based on the strength of transcription factor binding sites. BMC Evolutionary Biology, 2009, 9, 286.	3.2	26
45	Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins. ELife, 2018, 7, .	6.0	24
46	Computational learning on specificity-determining residue-nucleotide interactions. Nucleic Acids Research, 2015, 43, gkv1134.	14.5	20
47	Functional Analysis of Kinases and Transcription Factors in <i>Saccharomyces cerevisiae</i> Using an Integrated Overexpression Library. G3: Genes, Genomes, Genetics, 2017, 7, 911-921.	1.8	19
48	Local statistics allow quantification of cell-to-cell variability from high-throughput microscope images. Bioinformatics, 2015, 31, 940-947.	4.1	16
49	Discovering molecular features of intrinsically disordered regions by using evolution for contrastive learning. PLoS Computational Biology, 2022, 18, e1010238.	3.2	16
50	Predicting kinase substrates using conservation of local motif density. Bioinformatics, 2012, 28, 962-969.	4.1	15
51	Short linear motifs in intrinsically disordered regions modulate HOG signaling capacity. BMC Systems Biology, 2018, 12, 75.	3.0	11
52	An Unsupervised kNN Method to Systematically Detect Changes in Protein Localization in High-Throughput Microscopy Images. PLoS ONE, 2016, 11, e0158712.	2.5	11
53	Statistical Modeling and Machine Learning for Molecular Biology. , 0, , .		10
54	Inferring Selection on Amino Acid Preference in Protein Domains. Molecular Biology and Evolution, 2008, 26, 527-536.	8.9	9

#	Article	IF	CITATIONS
55	Parallel reorganization of protein function in the spindle checkpoint pathway through evolutionary paths in the fitness landscape that appear neutral in laboratory experiments. PLoS Genetics, 2017, 13, e1006735.	3.5	9
56	A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. Npj Genomic Medicine, 2021, 6, 91.	3.8	9
57	NoLogo: a new statistical model highlights the diversity and suggests new classes of Crm1-dependent nuclear export signals. BMC Bioinformatics, 2018, 19, 65.	2.6	8
58	Determining Physical Constraints in Transcriptional Initiation Complexes Using DNA Sequence Analysis. PLoS ONE, 2007, 2, e1199.	2.5	8
59	Whence Blobs? Phylogenetics of functional protein condensates. Biochemical Society Transactions, 2020, 48, 2151-2158.	3.4	7
60	Insights into molecular evolution from yeast genomics. Yeast, 2014, 31, 233-241.	1.7	6
61	Stochastic models for singleâ€cell data: Current challenges and the way forward. FEBS Journal, 2022, 289, 647-658.	4.7	6
62	A functionally divergent intrinsically disordered region underlying the conservation of stochastic signaling. PLoS Genetics, 2021, 17, e1009629.	3.5	6
63	Modeling the evolution of a classic genetic switch. BMC Systems Biology, 2011, 5, 24.	3.0	5
64	A Noisy Analog-to-Digital Converter Connects Cytosolic Calcium Bursts to Transcription Factor Nuclear Localization Pulses in Yeast. G3: Genes, Genomes, Genetics, 2019, 9, 561-570.	1.8	4
65	Introduction of Premature Stop Codons as an Evolutionary Strategy To Rescue Signaling Network Function. ACS Synthetic Biology, 2017, 6, 446-454.	3.8	3
66	In vitro evolution goes deep. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8071-8072.	7.1	2
67	Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration. Molecular Biology and Evolution, 2016, 33, 1478-1485.	8.9	1
68	Variational infinite heterogeneous mixture model for semi-supervised clustering of heart enhancers. Bioinformatics, 2019, 35, 3232-3239.	4.1	1
69	Extracting and Integrating Protein Localization Changes from Multiple Image Screens of Yeast Cells. Bio-protocol, 2018, 8, e3022.	0.4	1
70	Learning Biology Through Puzzle-solving: Unbiased Automatic Understanding of Microscopy Images with Self-supervised Learning. Microscopy and Microanalysis, 2020, 26, 690-692.	0.4	0