Nelson Spruston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. Neuron, 2022, 110, 96-108.e4.	3.8	33
2	Bursting potentiates the neuro–Al connection. Nature Neuroscience, 2021, 24, 905-906.	7.1	2
3	Hippocampal and thalamic afferents form distinct synaptic microcircuits in the mouse infralimbic frontal cortex. Cell Reports, 2021, 37, 109837.	2.9	8
4	Linking axon morphology to gene expression: a strategy for neuronal cell-type classification. Current Opinion in Neurobiology, 2020, 65, 70-76.	2.0	8
5	A Sparse, Spatially Biased Subtype of Mature Granule Cell Dominates Recruitment in Hippocampal-Associated Behaviors. Cell Reports, 2020, 31, 107551.	2.9	55
6	Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus. Nature Neuroscience, 2020, 23, 881-891.	7.1	54
7	Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight, 2020, 5, .	2.3	17
8	ShuTu: Open-Source Software for Efficient and Accurate Reconstruction of Dendritic Morphology. Frontiers in Neuroinformatics, 2019, 13, 68.	1.3	14
9	Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell, 2019, 179, 268-281.e13.	13.5	352
10	Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nature Reviews Neuroscience, 2019, 20, 193-204.	4.9	171
11	Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. ELife, 2019, 8, .	2.8	59
12	Functional clustering of dendritic activity during decision-making. ELife, 2019, 8, .	2.8	115
13	Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes. Cell, 2018, 173, 1280-1292.e18.	13.5	152
14	Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. Nature Neuroscience, 2018, 21, 353-363.	7.1	103
15	Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nature Communications, 2018, 9, 4336.	5.8	95
16	Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons. Neuron, 2018, 99, 147-162.e8.	3.8	48
17	A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nature Neuroscience, 2018, 21, 985-995.	7.1	65
18	The subiculum is a patchwork of discrete subregions. ELife, 2018, 7, .	2.8	70

#	Article	IF	CITATIONS
19	Integrating Results across Methodologies Is Essential for Producing Robust Neuronal Taxonomies. Neuron, 2017, 94, 747-751.e1.	3.8	13
20	Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. ELife, 2016, 5, e14997.	2.8	355
21	Principles of dendritic integration. , 2016, , 351-398.		24
22	Illuminating the Neuronal Architecture Underlying Context in Fear Memory. Cell, 2016, 167, 888-889.	13.5	5
23	To the Cloud! A Grassroots Proposal to Accelerate Brain Science Discovery. Neuron, 2016, 92, 622-627.	3.8	46
24	Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons. Journal of Neurophysiology, 2016, 116, 466-471.	0.9	28
25	Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons. Neuron, 2016, 89, 351-368.	3.8	270
26	Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron, 2016, 89, 1016-1030.	3.8	130
27	The future of dendrite research. , 2016, , 703-708.		Ο
28	Age-Dependent Changes in Intrinsic Neuronal Excitability in Subiculum after Status Epilepticus. PLoS ONE, 2015, 10, e0119411.	1.1	6
29	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. Neuron, 2015, 87, 252-256.	3.8	202
30	Dendritic integration: 60 years of progress. Nature Neuroscience, 2015, 18, 1713-1721.	7.1	379
31	Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. ELife, 2015, 4, .	2.8	77
32	Assembling Cell Ensembles. Cell, 2014, 157, 1502-1504.	13.5	1
33	Balanced Synaptic Impact via Distance-Dependent Synapse Distribution and Complementary Expression of AMPARs and NMDARs in Hippocampal Dendrites. Neuron, 2013, 80, 1451-1463.	3.8	37
34	Mechanisms of retroaxonal barrage firing in hippocampal interneurons. Journal of Physiology, 2013, 591, 4793-4805.	1.3	26
35	Information Processing in Dendrites and Spines. , 2013, , 231-260.		19
36	Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 2012, 491, 599-602.	13.7	244

#	Article	IF	CITATIONS
37	Synergistic Actions of Metabotropic Acetylcholine and Glutamate Receptors on the Excitability of Hippocampal CA1 Pyramidal Neurons. Journal of Neuroscience, 2012, 32, 6081-6091.	1.7	35
38	Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors. Neuron, 2012, 76, 776-789.	3.8	168
39	Targetâ€specific output patterns are predicted by the distribution of regularâ€spiking and bursting pyramidal neurons in the subiculum. Hippocampus, 2012, 22, 693-706.	0.9	80
40	Slow integration leads to persistent action potential firing in distal axons of coupled interneurons. Nature Neuroscience, 2011, 14, 200-207.	7.1	117
41	Timing isn't everything. Nature Neuroscience, 2010, 13, 277-279.	7.1	10
42	Questions about STDP as a General Model of Synaptic Plasticity. Frontiers in Synaptic Neuroscience, 2010, 2, 140.	1.3	79
43	A Post-Burst Afterdepolarization Is Mediated by Group I Metabotropic Glutamate Receptor-Dependent Upregulation of Cav2.3 R-Type Calcium Channels in CA1 Pyramidal Neurons. PLoS Biology, 2010, 8, e1000534.	2.6	41
44	Synaptic Depolarization Is More Effective than Back-Propagating Action Potentials during Induction of Associative Long-Term Potentiation in Hippocampal Pyramidal Neurons. Journal of Neuroscience, 2009, 29, 3233-3241.	1.7	68
45	A state-mutating genetic algorithm to design ion-channel models. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16829-16834.	3.3	45
46	Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors. Neuron, 2009, 61, 287-300.	3.8	35
47	Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons. Neuron, 2009, 63, 171-177.	3.8	148
48	Pyramidal neuron. Scholarpedia Journal, 2009, 4, 6130.	0.3	10
49	Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. Journal of Comparative Neurology, 2008, 506, 535-547.	0.9	103
50	Strength in numbers. Nature, 2008, 452, 420-421.	13.7	8
51	Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience, 2008, 9, 206-221.	4.9	1,381
52	Out of control in the dendrites. Nature Neuroscience, 2008, 11, 733-734.	7.1	16
53	Compartmental neural simulations with spatial adaptivity. Journal of Computational Neuroscience, 2008, 25, 465-480.	0.6	9
54	Coincidence Detection of Place and Temporal Context in a Network Model of Spiking Hippocampal Neurons. PLoS Computational Biology, 2007, 3, e234.	1.5	29

#	Article	IF	CITATIONS
55	Dendritic spikes induce single-burst long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17192-17197.	3.3	156
56	Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions. Journal of Physiology, 2007, 578, 799-818.	1.3	66
57	Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. Journal of Physiology, 2007, 581, 175-187.	1.3	54
58	Dendritic integration. , 2007, , 350-399.		5
59	Distance-Dependent Differences in Synapse Number and AMPA Receptor Expression in Hippocampal CA1 Pyramidal Neurons. Neuron, 2006, 50, 431-442.	3.8	171
60	Dendritic patch-clamp recording. Nature Protocols, 2006, 1, 1235-1247.	5.5	146
61	Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nature Neuroscience, 2005, 8, 839-841.	7.1	224
62	Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience, 2005, 8, 1667-1676.	7.1	267
63	Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. Journal of Physiology, 2005, 568, 69-82.	1.3	187
64	Output-Mode Transitions Are Controlled by Prolonged Inactivation of Sodium Channels in Pyramidal Neurons of Subiculum. PLoS Biology, 2005, 3, e175.	2.6	38
65	R-Type Calcium Channels Contribute to Afterdepolarization and Bursting in Hippocampal CA1 Pyramidal Neurons. Journal of Neuroscience, 2005, 25, 5763-5773.	1.7	152
66	Coincidence Detection of Place and Temporal Context in a Network Model of Spiking Hippocampal Neurons. PLoS Computational Biology, 2005, preprint, e234.	1.5	0
67	Dendritic arithmetic. Nature Neuroscience, 2004, 7, 567-569.	7.1	47
68	Intracellular correlate of EPSP-spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation. Hippocampus, 2003, 13, 801-805.	0.9	59
69	Psychostimulant-Induced Plasticity of Intrinsic Neuronal Excitability in Ventral Subiculum. Journal of Neuroscience, 2003, 23, 9937-9946.	1.7	34
70	Branching Out: A New Idea for Dendritic Function. Focus on "Coincidence Detection in Pyramidal Neurons Is Tuned by Their Dendritic Branching Pattern― Journal of Neurophysiology, 2003, 89, 2887-2888.	0.9	2
71	Serotonin Receptor Activation Inhibits Sodium Current and Dendritic Excitability in Prefrontal Cortex via a Protein Kinase C-Dependent Mechanism. Journal of Neuroscience, 2002, 22, 6846-6855. 	1.7	146
72	Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature, 2002, 418, 326-331.	13.7	582

#	Article	IF	CITATIONS
73	Axonal Gap Junctions Send Ripples through the Hippocampus. Neuron, 2001, 31, 669-671.	3.8	10
74	Dichotomy of Action-Potential Backpropagation in CA1 Pyramidal Neuron Dendrites. Journal of Neurophysiology, 2001, 86, 2998-3010.	0.9	181
75	Action Potential Bursting in Subicular Pyramidal Neurons Is Driven by a Calcium Tail Current. Journal of Neuroscience, 2001, 21, 3312-3321.	1.7	107
76	Distant synapses raise their voices. Nature Neuroscience, 2000, 3, 849-851.	7.1	10
77	Resting and Active Properties of Pyramidal Neurons in Subiculum and CA1 of Rat Hippocampus. Journal of Neurophysiology, 2000, 84, 2398-2408.	0.9	185
78	Diversity and Dynamics of Dendritic Signaling. Science, 2000, 290, 739-744.	6.0	700
79	Dendritic Calcium Spike Initiation and Repolarization Are Controlled by Distinct Potassium Channel Subtypes in CA1 Pyramidal Neurons. Journal of Neuroscience, 1999, 19, 8789-8798.	1.7	296
80	Slow Sodium Channel Inactivation in CA1 Pyramidal Cells. Annals of the New York Academy of Sciences, 1999, 868, 97-101.	1.8	14
81	Properties of Slow, Cumulative Sodium Channel Inactivation in Rat Hippocampal CA1 Pyramidal Neurons. Biophysical Journal, 1999, 76, 846-860.	0.2	129
82	Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Progress in Neurobiology, 1998, 55, 563-575.	2.8	156
83	Changes in Dendritic structure and function following Hippocampal Lesions: correlations with developmental events?. Progress in Neurobiology, 1998, 55, 641-650.	2.8	20
84	Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons. Neuron, 1998, 21, 1189-1200.	3.8	358
85	Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites. Journal of Neuroscience, 1998, 18, 3501-3510.	1.7	456
86	Specialized Electrophysiological Properties of Anatomically Identified Neurons in the Hilar Region of the Rat Fascia Dentata. Journal of Neurophysiology, 1998, 79, 1518-1534.	0.9	132
87	Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences, 1997, 20, 125-131.	4.2	671
88	Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons. Journal of Neuroscience, 1997, 17, 6639-6646.	1.7	208
89	Interneurons in the stratum lucidum of the rat hippocampus: An anatomical and electrophysiological characterization. , 1997, 385, 427-440.		51
90	Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science, 1995, 268, 297-300.	6.0	757

#	Article	IF	CITATIONS
91	Invited commentary. Current Opinion in Neurobiology, 1995, 5, 389-394.	2.0	23
92	Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS. Current Opinion in Neurobiology, 1994, 4, 366-372.	2.0	148
93	Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. Trends in Neurosciences, 1994, 17, 161-166.	4.2	249
94	Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. SSRN Electronic Journal, 0, , .	0.4	1