Tetsuya Yomo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8672762/publications.pdf Version: 2024-02-01

Τετειίνα Υρμο

#	Article	IF	CITATIONS
1	Primordial mimicry induces morphological change in Escherichia coli. Communications Biology, 2022, 5, 24.	4.4	7
2	CleanSeq: A Pipeline for Contamination Detection, Cleanup, and Mutation Verifications from Microbial Genome Sequencing Data. Applied Sciences (Switzerland), 2022, 12, 6209.	2.5	3
3	Photoinducible Azobenzene trimethylammonium bromide (AzoTAB)-mediated giant vesicle fusion compatible with synthetic protein translation reactions. Biochemical and Biophysical Research Communications, 2022, 618, 113-118.	2.1	4
4	The requirement of cellularity for abiogenesis. Computational and Structural Biotechnology Journal, 2021, 19, 2202-2212.	4.1	2
5	Giant Vesicles Produced with Phosphatidylcholines (PCs) and Phosphatidylethanolamines (PEs) by Water-in-Oil Inverted Emulsions. Life, 2021, 11, 223.	2.4	5
6	Development of an Automated UV Irradiation Device for Microbial Cell Culture. SLAS Technology, 2019, 24, 342-348.	1.9	2
7	Using Imaging Flow Cytometry to Quantify and Optimize Giant Vesicle Production by Water-in-oil Emulsion Transfer Methods. Langmuir, 2019, 35, 2375-2382.	3.5	24
8	A protocell with fusion and division. Biochemical Society Transactions, 2019, 47, 1909-1919.	3.4	14
9	A decay effect of the growth rate associated with genome reduction in Escherichia coli. BMC Microbiology, 2018, 18, 101.	3.3	19
10	Self-replication of circular DNA by a self-encoded DNA polymerase through rolling-circle replication and recombination. Scientific Reports, 2018, 8, 13089.	3.3	41
11	Automated in vitro evolution of a translation-coupled RNA replication system in a droplet flow reactor. Scientific Reports, 2018, 8, 11867.	3.3	12
12	Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Ql². Archives of Virology, 2018, 163, 2655-2662.	2.1	6
13	Reaction dynamics analysis of a reconstituted <i>Escherichia coli</i> protein translation system by computational modeling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1336-E1344.	7.1	40
14	A simple comparison of the extrinsic noise in gene expression between native and foreign regulations in Escherichia coli. Biochemical and Biophysical Research Communications, 2017, 486, 852-857.	2.1	4
15	De novo design and synthesis of a 30-cistron translation-factor module. Nucleic Acids Research, 2017, 45, 10895-10905.	14.5	28
16	Constructive Approaches for Understanding the Origin of Self-Replication and Evolution. Life, 2016, 6, 26.	2.4	19
17	Adaptation and Diversification of an RNA Replication System under Initiation―or Terminationâ€Impaired Translational Conditions. ChemBioChem, 2016, 17, 1229-1232.	2.6	8
18	Effect of Liposome Size on Internal RNA Replication Coupled with Replicase Translation. ChemBioChem, 2016, 17, 1282-1289.	2.6	12

#	Article	IF	CITATIONS
19	Inference of fitness values and putative appearance time points for evolvable self-replicating molecules from time series of occurrence frequencies in an evolution reactor. Journal of Theoretical Biology, 2016, 401, 38-42.	1.7	0
20	Host–parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4045-4050.	7.1	71
21	Sustainable proliferation of liposomes compatible with inner RNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 590-595.	7.1	46
22	Phenotypic convergence in bacterial adaptive evolution to ethanol stress. BMC Evolutionary Biology, 2015, 15, 180.	3.2	30
23	Reliable End-to-End Molecular Communication with Packet Replication and Retransmission. , 2015, , .		7
24	Functional specialization in regulation and quality control in thermal adaptive evolution. Genes To Cells, 2015, 20, 943-955.	1.2	9
25	Genomic confirmation of nutrientâ€dependent mutability of mutators in <i>Escherichia coli</i> . Genes To Cells, 2015, 20, 972-981.	1.2	12
26	A transcription and translation-coupled DNA replication system using rolling-circle replication. Scientific Reports, 2015, 5, 10404.	3.3	31
27	Bacterial transcriptome reorganization in thermal adaptive evolution. BMC Genomics, 2015, 16, 802.	2.8	22
28	Liposomeâ€Based in Vitro Evolution of Aminoacylâ€ŧRNA Synthetase for Enhanced Pyrrolysine Derivative Incorporation. ChemBioChem, 2015, 16, 1797-1802.	2.6	19
29	Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process. PLoS Genetics, 2015, 11, e1005392.	3.5	13
30	Shape Transformations of Lipid Vesicles by Insertion of Bulky-Head Lipids. PLoS ONE, 2015, 10, e0132963.	2.5	12
31	Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages. PLoS ONE, 2015, 10, e0135639.	2.5	17
32	Free-Energy-Based Design Policy for Robust Network Control against Environmental Fluctuation. Scientific World Journal, The, 2015, 2015, 1-12.	2.1	0
33	<i>In vitro</i> directed evolution of alpha-hemolysin by liposome display. Biophysics (Nagoya-shi,) Tj ETQq1 1 (0.784314 rg 0.4	gBT_/Overlock
34	A design principle for a single-stranded RNA genome that replicates with less double-strand formation. Nucleic Acids Research, 2015, 43, 8033-8043.	14.5	17
35	Replication of partial double-stranded RNAs by $Q^{\hat{l}2}$ replicase. Biochemical and Biophysical Research Communications, 2015, 467, 293-296.	2.1	5
36	Stochasticity in Gene Expression in a Cell-Sized Compartment. ACS Synthetic Biology, 2015, 4, 566-576.	3.8	53

#	Article	IF	CITATIONS
37	Simple Identification of Two Causes of Noise in an Aptazyme System by Monitoring Cell-Free Transcription. Methods in Enzymology, 2015, 550, 93-107.	1.0	0
38	Global coordination in adaptation to gene rewiring. Nucleic Acids Research, 2015, 43, 1304-1316.	14.5	17
39	Adaptive Evolution of an Artificial RNA Genome to a Reduced Ribosome Environment. ACS Synthetic Biology, 2015, 4, 292-298.	3.8	13
40	Evolutionary dynamics of a polymorphic self-replicator population with a finite population size and hyper mutation rate. Journal of Theoretical Biology, 2015, 382, 298-308.	1.7	0
41	Periodic Pattern of Genetic and Fitness Diversity during Evolution of an Artificial Cell-Like System. Molecular Biology and Evolution, 2015, 32, msv189.	8.9	11
42	Liposome-Based Liquid Handling Platform Featuring Addition, Mixing, and Aliquoting of Femtoliter Volumes. PLoS ONE, 2014, 9, e101820.	2.5	26
43	Adaptive LSH based on the particle swarm method with the attractor selection model for fast approximation of Gaussian process regression. Artificial Life and Robotics, 2014, 19, 220-226.	1.2	6
44	Directed evolution of cell size in Escherichia coli. BMC Evolutionary Biology, 2014, 14, 257.	3.2	19
45	Contribution of Silent Mutations to Thermal Adaptation of RNA Bacteriophage Qβ. Journal of Virology, 2014, 88, 11459-11468.	3.4	30
46	Liposome Display: <i>In Vitro</i> Directed Evolution of Membrane Proteins. Seibutsu Butsuri, 2014, 54, 146-149.	0.1	0
47	Cell-free Protein Synthesis in a Microchamber Revealed the Presence of an Optimum Compartment Volume for High-order Reactions. ACS Synthetic Biology, 2014, 3, 347-352.	3.8	20
48	Effects of ribosomes on the kinetics of $Q\hat{l}^2$ replication. FEBS Letters, 2014, 588, 117-123.	2.8	3
49	Thermodynamics-Based Entropy Adjustment for Robust Self-Organized Network Controls. , 2014, , .		Ο
50	Gene expression scaled by distance to the genome replication site. Molecular BioSystems, 2014, 10, 375-379.	2.9	18
51	Identification of giant unilamellar vesicles with permeability to small charged molecules. RSC Advances, 2014, 4, 35224.	3.6	23
52	<i>In Vitro</i> Membrane Protein Synthesis Inside Cell-Sized Vesicles Reveals the Dependence of Membrane Protein Integration on Vesicle Volume. ACS Synthetic Biology, 2014, 3, 372-379.	3.8	70
53	Positive roles of compartmentalization in internal reactions. Current Opinion in Chemical Biology, 2014, 22, 12-17.	6.1	19
54	A reduced genome decreases the host carrying capacity for foreign DNA. Microbial Cell Factories, 2014, 13, 49.	4.0	13

#	Article	IF	CITATIONS
55	Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system. Journal of Bioscience and Bioengineering, 2014, 118, 554-557.	2.2	53
56	Liposome display for in vitro selection and evolution of membrane proteins. Nature Protocols, 2014, 9, 1578-1591.	12.0	123
57	Reliable End-to-End Molecular Communication with Packet Replication and Retransmission. , 2014, , .		0
58	Adaptation of a Cyanobacterium to a Biochemically Rich Environment in Experimental Evolution as an Initial Step toward a Chloroplast-Like State. PLoS ONE, 2014, 9, e98337.	2.5	10
59	1C33 Volume Dependence of Cell-free Protein Synthesis Using a Glass Microchamber. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 91-92.	0.0	0
60	Kinetic model of doubleâ€stranded RNA formation during long RNA replication by Qβ replicase. FEBS Letters, 2013, 587, 2565-2571.	2.8	10
61	In vitro evolution of α-hemolysin using a liposome display. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16796-16801.	7.1	123
62	Defined DNA-Mediated Assemblies of Gene-Expressing Giant Unilamellar Vesicles. Langmuir, 2013, 29, 15309-15319.	3.5	42
63	Growth rate-coordinated transcriptome reorganization in bacteria. BMC Genomics, 2013, 14, 808.	2.8	44
64	A controllable gene expression system in liposomes that includes a positive feedback loop. Molecular BioSystems, 2013, 9, 1282.	2.9	44
65	Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nature Communications, 2013, 4, 2494.	12.8	147
66	3P214 Investigating bactericidal mechanism of antimicrobial peptids(13B. Biological & Artifical) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 30
67	2P262 Oscillation dynamics of Host-Parasite population in an artificial cell-like system(20. Origin of) Tj ETQq1 1 ().784314 0.1	rgBT /Overloc
68	Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5942-5947.	7.1	148
69	1G1534 Darwinian Evolution of artificial self-replication system(Cell Biology I,Oral Presentation,The) Tj ETQq1 1 ().784314 0.1	rgBT /Overloc
70	Effects of Compartment Size on the Kinetics of Intracompartmental Multimeric Protein Synthesis. ACS Synthetic Biology, 2012, 1, 431-437.	3.8	27
71	Fractal-shaped microchannel design for a kinetic analysis of biochemical reaction in a delay line. Microfluidics and Nanofluidics, 2012, 13, 273-278.	2.2	7
72	Statistical analysis of discrete encapsulation of nanomaterials in colloidal capsules. Analytical Methods, 2012, 4, 1648.	2.7	15

#	Article	IF	CITATIONS
73	Cell-free protein synthesis from a single copy of DNA in a glass microchamber. Lab on A Chip, 2012, 12, 2704.	6.0	29
74	Construction of a Gene Screening System Using Giant Unilamellar Liposomes and a Fluorescence-Activated Cell Sorter. Analytical Chemistry, 2012, 84, 5017-5024.	6.5	26
75	Hydrodynamic trapping of Tetrahymena thermophila for the long-term monitoring of cell behaviors. Lab on A Chip, 2012, 12, 3451.	6.0	30
76	Cell-Free Protein Synthesis inside Giant Unilamellar Vesicles Analyzed by Flow Cytometry. Langmuir, 2012, 28, 8426-8432.	3.5	124
77	Directed Evolution of Proteins throughIn VitroProtein Synthesis in Liposomes. Journal of Nucleic Acids, 2012, 2012, 1-11.	1.2	18
78	Importance of Parasite RNA Species Repression for Prolonged Translation-Coupled RNA Self-Replication. Chemistry and Biology, 2012, 19, 478-487.	6.0	48
79	Size control of giant unilamellar vesicles prepared from inverted emulsion droplets. Journal of Colloid and Interface Science, 2012, 376, 119-125.	9.4	78
80	Programmed Vesicle Fusion Triggers Gene Expression. Langmuir, 2011, 27, 13082-13090.	3.5	62
81	Experimental Approach for Early Evolution of Protein Function. , 2011, , 139-153.		0
82	Comparison of Sequence Reads Obtained from Three Next-Generation Sequencing Platforms. PLoS ONE, 2011, 6, e19534.	2.5	75
83	3N1148 Construction of an Artificial Reaction System Capable of Darwinian Evolution(Protein :) Tj ETQq1 1 0.78	4314 rgBT 0.1	「/Overlock 1 0
84	Kinetic Analysis of β-Galactosidase and β-Glucuronidase Tetramerization Coupled with Protein Translation. Journal of Biological Chemistry, 2011, 286, 22028-22034.	3.4	28
85	Ongoing Phenotypic and Genomic Changes in Experimental Coevolution of RNA Bacteriophage QÎ ² and Escherichia coli. PLoS Genetics, 2011, 7, e1002188.	3.5	47
86	Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism. PLoS ONE, 2011, 6, e17105.	2.5	68
87	1P342 1J1520 Diffusion Modeling of Controlled Shrinkage for Femtoliter Water-in-oil Emulsion(Bioengineering,Oral Presentations,The 48th Annual Meeting of the Biophysical Society of) Tj ETQq1 1	0. 7&4 314	rg B T /Overlo
88	1P070 Co-translational folding of beta-galactosidase and beta-glucuronidase in an in vitro translation system(Protein:Property,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S31.	0.1	0
89	1P291 1H1325 Effects of cell size on internal self-replication of genetic information(Origin of life &) Tj ETQ Butsuri, 2010, 50, S71.	1 1 0.784 0.1	-314 rgBT / 0
90	2P250 Detection of association and fusion of giant vesicles using fluorescence-activated cell sorter(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S126-S127.	0.1	0

#	Article	IF	CITATIONS
91	3P213 Single Cell Analysis on a Synthetic Toggle Switch Sensitive to Environmental Perturbation(Cell) Tj ETQq	1 1 0,78431 0.1	4 rgBT /Over
92	1P286 1H1310 Construction of an evolvable self-replication system of genetic information(Origin of) Tj ETQqQ Seibutsu Butsuri, 2010, 50, S70.	0 0 rgBT /C 0.1	overlock 10 Th O
93	2P102 In vitro selection for covalent binding via disulfide interchange with ribosome display(The 48th) Tj ETQq	1 1 0.78431 0.1	.4 rgBT /Over
94	Identification of Two Forms of Qβ Replicase with Different Thermal Stabilities but Identical RNA Replication Activity. Journal of Biological Chemistry, 2010, 285, 37210-37217.	3.4	10
95	Constructing Partial Models of Cells. Cold Spring Harbor Perspectives in Biology, 2010, 2, a004945-a004945.	5.5	40
96	Transition from Positive to Neutral in Mutation Fixation along with Continuing Rising Fitness in Thermal Adaptive Evolution. PLoS Genetics, 2010, 6, e1001164.	3.5	74
97	Synthesis of Functional Proteins Within Liposomes. Methods in Molecular Biology, 2010, 607, 243-256.	0.9	30
98	Compartmentalization in a Water-in-Oil Emulsion Repressed the Spontaneous Amplification of RNA by Qβ Replicase. Biochemistry, 2010, 49, 1809-1813.	2.5	31
99	Cellular Compartment Model for Exploring the Effect of the Lipidic Membrane on the Kinetics of Encapsulated Biochemical Reactions. Langmuir, 2010, 26, 8544-8551.	3.5	60
100	Detection of Association and Fusion of Giant Vesicles Using a Fluorescence-Activated Cell Sorter. Langmuir, 2010, 26, 15098-15103.	3.5	54
101	Quantifying epistatic interactions among the components constituting the protein translation system. Molecular Systems Biology, 2009, 5, 297.	7.2	62
102	How selection affects phenotypic fluctuation. Molecular Systems Biology, 2009, 5, 264.	7.2	51
103	Construction of Escherichia coli gene expression level perturbation collection. Metabolic Engineering, 2009, 11, 56-63.	7.0	30
104	Population Analysis of Structural Properties of Giant Liposomes by Flow Cytometry. Langmuir, 2009, 25, 10439-10443.	3.5	89
105	Noisy cell growth rate leads to fluctuating protein concentration in bacteria. Physical Biology, 2009, 6, 036015.	1.8	51
106	2P-228 What is the condition of realizing a self-replication system of genetic information in vitro?(Origin of life & Evolution,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S143.	0.1	0
107	1P-183 Size control of uniamellar giantvesicle using microfluidics(Biol & Artifi memb.:Structure &) Tj ETQq1 1 C	0.784314 rgl 0.1	BT /Overlock
108	2P-143 Stochastic gene expression induced population selection promotes adaptation to nutrient depletion(Cell biology,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S128.	0.1	0

#	Article	IF	CITATIONS
109	Replication of Genetic Information with Selfâ€Encoded Replicase in Liposomes. ChemBioChem, 2008, 9, 2403-2410.	2.6	159
110	Importance of Translation–Replication Balance for Efficient Replication by the Selfâ€Encoded Replicase. ChemBioChem, 2008, 9, 3023-3028.	2.6	24
111	Quantitative Study of the Structure of Multilamellar Giant Liposomes As a Container of Protein Synthesis Reaction. Langmuir, 2008, 24, 13540-13548.	3.5	90
112	Emergence of Polyproline II-Like Structure at Early Stages of Experimental Evolution from Random Polypeptides. Molecular Biology and Evolution, 2008, 25, 1113-1119.	8.9	8
113	Comprehensive Analysis of the Effects of Escherichia coli ORFs on Protein Translation Reaction. Molecular and Cellular Proteomics, 2008, 7, 1530-1540.	3.8	32
114	3P-278 Requirements for the efficient self-replication system of genetic information(The 46th Annual) Tj ETQq0 (0 0 rgBT /C	overlock 10 T
115	2S8-6 Dynamics of structure and internal reactions in liposomes explored by fluorescence-activated cell sorter(2S8 Giant Liposome Research Front Line,The 46th Annual Meeting of the Biophysical) Tj ETQq1 1 0.78	4301. ⊈ rgB1	/Overlock 1
116	3P-277 Platform for controlling micro-emulsions as a model of growth and division cycle of the cell(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S170.	0.1	0
117	Kinetic Analysis of the Entire RNA Amplification Process by $Q^{\hat{l}2}$ Replicase. Journal of Biological Chemistry, 2007, 282, 15516-15527.	3.4	25
118	3P354 Analysis of the relationship between noise in gene expression and the regulatory sturucture in amino acid biosynthesis pathway(Others,Poster Presentations). Seibutsu Butsuri, 2007, 47, S291.	0.1	0
119	1P234 The gene expression transition dynamics of E.coli in the symbiotic system with D.discoideum(Bioinformatics-functional genomics,Poster Presentations). Seibutsu Butsuri, 2007, 47, S82.	0.1	0
120	3P271 RNA-protein self-replicating system in liposome(The genesis of life, and biological) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tr 0.1	f 50 302 Td
121	3P274 Experimental evolution of a primordial DNA binding protein(Proteins- protein engineering, and) Tj ETQq1 🕻	1 0,78431 0.1	4 rgBT /Over
122	Nascent chain, mRNA, and ribosome complexes generated by a pure translation system. Biochemical and Biophysical Research Communications, 2007, 352, 372-377.	2.1	30
123	Insight into the sequence specificity of a probe on an Affymetrix GeneChip by titration experiments using only one oligonucleotide. Biophysics (Nagoya-shi, Japan), 2007, 3, 47-56.	0.4	1
124	Adaptive Response of a Gene Network to Environmental Changes by Fitness-Induced Attractor Selection. PLoS ONE, 2006, 1, e49.	2.5	237
125	Experimental Rugged Fitness Landscape in Protein Sequence Space. PLoS ONE, 2006, 1, e96.	2.5	53
126	S3d1-2 Relevance of phenotypic fluctuation to evolution(S3-d1: "Phenotype Dynamics, Fluctuation, and) Tj ETQq 46, S135.	0 0 0 rgBT 0.1	/Overlock 1 0

#	Article	IF	CITATIONS
	1P407 Fitness induced gene expression of chloramphenicol-resistant Escherichia coli strain(16.) Tj ETQq1 1 0.784	314 rgBT	/Overlock 1
127	Butsuri, 2006, 46, S248.	0.1	Ο
128	2P438 Strategy to evaluate the effect of individual E. coli protein on the protein translation machinery(48. Bioinformatics, genomics and proteomics (II),Poster Session,Abstract,Meeting Program) Tj ETQq0	0 0.1 gBT /	Oværlock 10
129	Femtoliter compartment in liposomes for in vitro selection of proteins. Analytical Biochemistry, 2006, 357, 128-136.	2.4	99
130	Functional Qβ replicase genetically fusing essential subunits EF-Ts and EF-Tu with β-subunit. Journal of Bioscience and Bioengineering, 2006, 101, 421-426.	2.2	26
131	Quantification of structural properties of cell-sized individual liposomes by flow cytometry. Journal of Bioscience and Bioengineering, 2006, 102, 171-178.	2.2	47
132	Inherent characteristics of gene expression for buffering environmental changes without the corresponding transcriptional regulations. Biophysics (Nagoya-shi, Japan), 2006, 2, 63-70.	0.4	6
133	Ubiquity of log-normal distributions in intra-cellular reaction dynamics. Biophysics (Nagoya-shi,) Tj ETQq1 1 0.784	314 rgBT 0.4	/Overlock 1(145
134	Universality and flexibility in gene expression from bacteria to human. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3765-3769.	7.1	139
135	Protein folding by the effects of macromolecular crowding. Protein Science, 2004, 13, 125-133.	7.6	187
136	Evolution of an Arbitrary Sequence in Solubility. Journal of Molecular Evolution, 2004, 58, 196-202.	1.8	49
137	Expression of a cascading genetic network within liposomes. FEBS Letters, 2004, 576, 387-390.	2.8	202
138	Can an Arbitrary Sequence Evolve Towards Acquiring a Biological Function?. Journal of Molecular Evolution, 2003, 56, 162-168.	1.8	40
139	On the relation between fluctuation and response in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14086-14090.	7.1	137
140	Importance of compartment formation for a self-encoding system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7514-7517.	7.1	35
141	Conformational change of the actomyosin complex drives the multiple stepping movement. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9202-9206.	7.1	28
142	Evolvability of random polypeptides through functional selection within a small library. Protein Engineering, Design and Selection, 2002, 15, 619-626.	2.1	46
143	On a Kinetic Origin of Heredity: Minority Control in a Replicating System with Mutually Catalytic Molecules. Journal of Theoretical Biology, 2002, 214, 563-576.	1.7	44
144	Plasticity of Fitness and Diversification Process During an Experimental Molecular Evolution. Journal of Molecular Evolution, 2001, 52, 502-509.	1.8	29

#	Article	IF	CITATIONS
145	Synthesis of functional protein in liposome. Journal of Bioscience and Bioengineering, 2001, 92, 590-593.	2.2	196
146	GroEL Binds Artificial Proteins with Random Sequences. Journal of Biological Chemistry, 2000, 275, 13755-13758.	3.4	28
147	Gradual development of folding ability through functional selection. , 1999, , .		Ο
148	Evolutionary molecular engineering by random elongation mutagenesis. Nature Biotechnology, 1999, 17, 58-61.	17.5	84
149	Isologous Diversification for Robust Development of Cell Society. Journal of Theoretical Biology, 1999, 143-256.	1.7	79
150	Gradual development of protein-like global structures through functional selection. Nature Structural Biology, 1999, 6, 743-746.	9.7	40
151	Properties of Artificial Proteins with Random Sequencesa. Annals of the New York Academy of Sciences, 1998, 864, 131-135.	3.8	7
152	How small can the difference among competitors be for coexistence to occur. Researches on Population Ecology, 1998, 40, 223-226.	0.9	5
153	Characterization of soluble artificial proteins with random sequences. FEBS Letters, 1998, 421, 147-151.	2.8	36
154	Insertion of foreign random sequences of 120 amino acid residues into an active enzyme. FEBS Letters, 1997, 402, 177-180.	2.8	23
155	Isologous diversification: A theory of cell differentiation. Bulletin of Mathematical Biology, 1997, 59, 139-196.	1.9	20
156	Isologous diversification: A theory of cell differentiation. Bulletin of Mathematical Biology, 1997, 59, 139-196.	1.9	94
157	Solubility of artificial proteins with random sequences. FEBS Letters, 1996, 382, 21-25.	2.8	60
158	Fate of a mutant emerging at the initial stage of evolution. Researches on Population Ecology, 1996, 38, 231-237.	0.9	18
159	Mathematical model allowing the coexistence of closely related competitors at the initial stage of evolution. Researches on Population Ecology, 1996, 38, 239-247.	0.9	14
160	Dynamic clustering of bacterial population. Physica D: Nonlinear Phenomena, 1994, 75, 81-88.	2.8	31
161	Cell division, differentiation and dynamic clustering. Physica D: Nonlinear Phenomena, 1994, 75, 89-102.	2.8	85
162	Cloning, nucleotide sequence, and expression in escherichia coli of DNA polymerase gene (polA) from thermus thermophilus HB8. Journal of Bioscience and Bioengineering, 1993, 76, 265-269.	0.9	20

#	Article	IF	CITATIONS
163	Stabilization of xylanase by random mutagenesis. FEBS Letters, 1993, 316, 123-127.	2.8	65
164	Promenade in the Sequence Space of Bacterial Catalase by Random Mutagenesis. Annals of the New York Academy of Sciences, 1992, 672, 103-105.	3.8	0
165	Preparation and kinetic properties of 5-ethylphenazine-lactate-dehydrogenase-NAD+ conjugate, a semisynthetic lactate oxidase showing a hide-and-seek effect. FEBS Journal, 1992, 203, 533-542.	0.2	4
166	Principles for designing enzyme-like catalysts based on the rate-acceleration mechanisms of semisynthetic oxidases. FEBS Journal, 1992, 203, 543-550.	0.2	5
167	Preparation and kinetic properties of 5-ethylphenazine-poly(ethylene-glycol)-glutamate-dehydrogenase conjugate. A semisynthetic NADH oxidase. FEBS Journal, 1991, 196, 343-348.	0.2	8
168	Preparation and kinetic properties of 5-ethylphenazine-glucose-dehydrogenase-NAD+ conjugate, a semisynthetic glucose oxidase. FEBS Journal, 1991, 200, 759-766.	0.2	4
169	The grammatical rule for all DNA: Junk and coding sequences. Electrophoresis, 1991, 12, 103-108.	2.4	29
170	Synthesis and characterization of 1-substituted 5-alkylphenazine derivatives carrying functional groups. FEBS Journal, 1989, 179, 293-298.	0.2	16
171	Preparation and kinetic properties of 5-ethylphenazine - poly(ethylene glycol) - NAD+ conjugate, a unique catalyst having an intramolecular reaction step. FEBS Journal, 1989, 179, 299-305.	0.2	13