
Heung Yong Ha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8671888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pt-CeO2/C anode catalyst for direct methanol fuel cells. Applied Catalysis B: Environmental, 2008, 84, 773-782.	20.2	196
2	Characteristics of the PEMFC Repetitively Brought to Temperatures below 0°C. Journal of the Electrochemical Society, 2003, 150, A1667.	2.9	175
3	Recent progress in passive direct methanol fuel cells at KIST. Journal of Power Sources, 2004, 130, 172-177.	7.8	173
4	Fixation of Nanosized Proton Transport Channels in Membranesâ€. Macromolecules, 2003, 36, 3228-3234.	4.8	141
5	Effects of Water Removal on the Performance Degradation of PEMFCs Repetitively Brought to <0°C. Journal of the Electrochemical Society, 2004, 151, A661.	2.9	128
6	A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells. Journal of Power Sources, 2015, 297, 224-241.	7.8	122
7	Structural characterization and surface modification of sulfonated polystyrene–(ethylene–butylene)–styrene triblock proton exchange membranes. Journal of Membrane Science, 2003, 214, 245-257.	8.2	105
8	Development of nanophase CeO2-Pt/C cathode catalyst for direct methanol fuel cell. Journal of Power Sources, 2005, 140, 59-65.	7.8	100
9	A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery. Carbon, 2018, 128, 31-37.	10.3	96
10	Performance evaluation of passive DMFC single cells. Journal of Power Sources, 2006, 158, 1256-1261.	7.8	95
11	On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells. Journal of Power Sources, 2005, 142, 50-55.	7.8	90
12	Chemical vapor deposition of hydrogen-permselective silica films on porous glass supports from tetraethylorthosilicate. Journal of Membrane Science, 1993, 85, 279-290.	8.2	81
13	Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide. Journal of Membrane Science, 1996, 111, 81-92.	8.2	78
14	Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles. Applied Energy, 2018, 229, 910-921.	10.1	76
15	Facile Metal Coordination of Active Site Imprinted Nitrogen Doped Carbons for the Conservative Preparation of Nonâ€Noble Metal Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2018, 8, 1701771.	19.5	73
16	Methane steam reforming in a Pd-Ru membrane reactor. Korean Journal of Chemical Engineering, 2000, 17, 288-291.	2.7	67
17	Title is missing!. Macromolecular Rapid Communications, 2002, 23, 753-756.	3.9	67
18	Influence of the solvent in anode catalyst ink on the performance of a direct methanol fuel cell. Journal of Power Sources, 2004, 135, 29-35.	7.8	63

#	Article	IF	CITATIONS
19	Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells. Journal of Power Sources, 2009, 187, 378-386.	7.8	62
20	Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 17388-17400.	10.3	62
21	Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ionics, 2006, 177, 3233-3243.	2.7	61
22	Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation. Electrochimica Acta, 2010, 55, 4827-4835.	5.2	60
23	Nafion®-graft-polystyrene sulfonic acid membranes for direct methanol fuel cells. Journal of Membrane Science, 2006, 276, 51-58.	8.2	58
24	Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells. Journal of Power Sources, 2002, 109, 412-417.	7.8	57
25	The effect of pretreatment methods on the performance of passive DMFCs. Electrochimica Acta, 2004, 50, 781-785.	5.2	57
26	Investigations of performance degradation and mitigation strategies in direct methanol fuel cells. International Journal of Hydrogen Energy, 2009, 34, 2043-2051.	7.1	57
27	Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells. Electrochemistry Communications, 2004, 6, 1069-1074.	4.7	56
28	Operational characteristics of a 50W DMFC stack. Journal of Power Sources, 2006, 155, 203-212.	7.8	56
29	Nano-structured Pt–Cr anode catalyst over carbon support, for direct methanol fuel cell. Journal of Power Sources, 2006, 156, 466-471.	7.8	52
30	High dispersion platinum catalyst using mesoporous carbon support for fuel cells. Electrochimica Acta, 2008, 54, 856-861.	5.2	51
31	Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Scientific Reports, 2017, 7, 40910.	3.3	49
32	Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane. International Journal of Hydrogen Energy, 2010, 35, 6924-6933.	7.1	47
33	Effects of temperature and partial pressure of CO2/O2 on corrosion behaviour of stainless-steel in molten Li/Na carbonate salt. Journal of Power Sources, 2000, 89, 1-6.	7.8	46
34	Preparation and Characterization of Nafion/Poly(1-vinylimidazole) Composite Membrane for Direct Methanol Fuel Cell Application. Journal of the Electrochemical Society, 2005, 152, A1366.	2.9	41
35	A direct methanol fuel cell system to power a humanoid robot. Journal of Power Sources, 2010, 195, 293-298.	7.8	40
36	Highly functionalized nanoporous thin carbon paper electrodes for high energy density of zero-gap vanadium redox flow battery. Chemical Engineering Journal, 2019, 378, 122190.	12.7	40

#	Article	IF	CITATIONS
37	Electrochemical studies of DMFC anodes with different ionomer content. Electrochimica Acta, 2004, 50, 801-806.	5.2	39
38	Sulfonated poly(ether sulfone) for universal polymer electrolyte fuel cell operations. Journal of Power Sources, 2006, 160, 353-358.	7.8	38
39	Influence of water and degree of sulfonation on the structure and dynamics of SPEEK studied by solid-state 13C and 1H NMR. Polymer, 2009, 50, 2664-2673.	3.8	36
40	Plasma-functionalized carbon-layered separators for improved performance of lithium sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 3772-3782.	10.3	35
41	Investigation of various ionomer-coated carbon supports for direct methanol fuel cell applications. Applied Catalysis B: Environmental, 2008, 77, 373-385.	20.2	34
42	A highly efficient and stable organic additive for the positive electrolyte in vanadium redox flow batteries: taurine biomolecules containing –NH ₂ and –SO ₃ H functional groups. Journal of Materials Chemistry A, 2018, 6, 4695-4705.	10.3	33
43	Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles. Journal of Power Sources, 2019, 419, 229-236.	7.8	33
44	Properties of the reinforced composite membranes formed by melt soluble ion conducting polymer resins for PEMFCs. Electrochimica Acta, 2004, 50, 571-575.	5.2	29
45	Behavioral pattern of a monopolar passive direct methanol fuel cell stack. Journal of Power Sources, 2006, 157, 253-259.	7.8	29
46	Effect of the ionomers in the electrode on the performance of PEMFC under non-humidifying conditions. Electrochimica Acta, 2004, 50, 673-676.	5.2	28
47	Characteristics of the Nafion®-impregnated polycarbonate composite membranes for PEMFCs. Electrochimica Acta, 2004, 50, 577-581.	5.2	28
48	Surface Characterization of Argon-Plasma-Modified Perfluorosulfonic Acid Membranes. Journal of Physical Chemistry B, 2006, 110, 4240-4246.	2.6	28
49	Physical degradation of cathode catalyst layer: A major contributor to accelerated water flooding in long-term operation of DMFCs. Applied Energy, 2014, 129, 346-353.	10.1	26
50	Techno-economic and environmental evaluation of nano calcium carbonate production utilizing the steel slag. Journal of CO2 Utilization, 2020, 37, 113-121.	6.8	25
51	Polybenzimidazole membranes for vanadium redox flow batteries: Effect of sulfuric acid doping conditions. Chemical Engineering Journal, 2022, 435, 134902.	12.7	25
52	Impact of cathode channel depth on performance of direct methanol fuel cells. Journal of Power Sources, 2008, 183, 226-231.	7.8	24
53	Incorporation of Zirconium Hydrogen Phosphate into Porous Ionomer Membranes. Electrochemical and Solid-State Letters, 2004, 7, A127.	2.2	23
54	Modification of carbon support to enhance performance of direct methanol fuel cell. Journal of Power Sources, 2006, 162, 1023-1028.	7.8	22

#	Article	IF	CITATIONS
55	Operation of a proton exchange membrane fuel cell under non-humidified conditions using a membrane–electrode assemblies with composite membrane and electrode. Journal of Power Sources, 2007, 167, 325-329.	7.8	21
56	Alumina composite membranes prepared by MOCVD. Journal of Materials Science Letters, 1997, 16, 1023-1026.	0.5	20
57	An efficient decal transfer method using a roll-press to fabricate membrane electrode assemblies for direct methanol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 18463-18470.	7.1	20
58	Nafion composite membranes containing rod-shaped polyrotaxanes for direct methanol fuel cells. Macromolecular Research, 2006, 14, 214-219.	2.4	19
59	A study on enzymatic reaction using a liquid emulsion membrane technique. Biotechnology and Bioengineering, 1992, 39, 125-131.	3.3	17
60	A novel high performance configuration of electrochemical cell to produce alkali for sequestration of carbon dioxide. Electrochimica Acta, 2016, 219, 655-663.	5.2	16
61	Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization. Water Science and Technology, 2016, 73, 3064-3071.	2.5	15
62	Comparative studies of a single cell and a stack of direct methanol fuel cells. Korean Journal of Chemical Engineering, 2005, 22, 406-411.	2.7	14
63	Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures. Applied Energy, 2014, 129, 104-111.	10.1	14
64	A sensor-less methanol concentration control system based on feedback from the stack temperature. Applied Energy, 2014, 131, 257-266.	10.1	13
65	A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells. Energy, 2016, 100, 217-226.	8.8	13
66	Elucidating the performance-limiting electrode for all-vanadium redox flow batteries through in-depth physical and electrochemical analyses. Journal of Industrial and Engineering Chemistry, 2019, 80, 450-460.	5.8	13
67	Impedance Analysis on Transient Behavior of DMFC Anodes during Preconditioning Process. Journal of the Electrochemical Society, 2005, 152, A2345.	2.9	12
68	Effects of polyamidoamine dendrimers on the catalytic layers of a membrane electrode assembly in fuel cells. Macromolecular Research, 2006, 14, 101-106.	2.4	12
69	Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method. Applied Energy, 2014, 114, 164-171.	10.1	12
70	Petal-shaped SnO2 free-standing electrodes with electrically conducting layers via a plasma-activated nitrogen doping process for high performance lithium-ion batteries. Chemical Engineering Journal, 2021, 412, 128614.	12.7	11
71	Effects of organo-functionalization and sulfonation of MCM-41on the proton selectivities of MCM-41/Nafion composite membranes for DMFC. Microporous and Mesoporous Materials, 2008, 114, 238-249.	4.4	10
72	Effect of pretreatment methods on performance of passive DMFCs. Fuel Cells Bulletin, 2004, 2004, 11-14.	0.1	9

#	Article	IF	CITATIONS
73	Synthesis of branched carbon nanotubes by carbonization of solid polyvinylidene fluoride fibers. Carbon, 2011, 49, 4601-4603.	10.3	9
74	Development of a compact continuous-flow electrochemical cell for an energy efficient production of alkali. Electrochimica Acta, 2015, 180, 845-851.	5.2	9
75	Composite polymer electrolyte membranes containing polyrotaxanes. Renewable Energy, 2008, 33, 248-253.	8.9	8
76	Properties and formation mechanisms of branched carbon nanotubes from polyvinylidene fluoride fibers. Carbon, 2013, 63, 567-571.	10.3	7
77	Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures. ACS Applied Materials & Interfaces, 2019, 11, 26842-26853.	8.0	7
78	Parametric investigation of a high-yield decal technique to fabricate membrane electrode assemblies for direct methanol fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12427-12437.	7.1	6
79	High Performance CeO[sub 2]- and Ce[sub 0.8]Sm[sub 0.2]O[sub 2]-Modified Pt/C Catalysts for the Cathode of a DMFC. Journal of the Electrochemical Society, 2009, 156, B801.	2.9	4
80	Tailoring cathode structure of catalyst coated membranes for performance enhancement in direct methanol fuel cells. International Journal of Hydrogen Energy, 2016, 41, 21366-21374.	7.1	4
81	The relations of inattention and hyperactivity to academic cheating in adolescents with executive functioning problems. Psychology in the Schools, 2022, 59, 784-799.	1.8	2
82	Comparison of Various Electrode Fabrication Methods for Use in an Electrolyzer to Produce of HCl and NaOH from NaCl. ECS Meeting Abstracts, 2020, MA2020-02, 3855-3855.	0.0	0