Teresa CastÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8671769/publications.pdf

Version: 2024-02-01

516710 434195 1,001 44 16 citations h-index papers

g-index 46 46 46 835 docs citations times ranked citing authors all docs

31

#	Article	IF	Citations
1	Multicaloric materials and effects. MRS Bulletin, 2018, 43, 295-299.	3.5	76
2	Multiferroic and Related Hysteretic Behavior in Ferromagnetic Shape Memory Alloys. Physica Status Solidi (B): Basic Research, 2018, 255, 1700327.	1.5	1
3	Intermittent dynamics in externally driven ferroelastics and strain glasses. Physical Review E, 2018, 98,	2.1	9
4	Giant multicaloric response of bulk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:n< td=""><td>nn :84:29 <td>ml:60n></td></td></mml:n<></mml:msub></mml:mrow></mml:math>	nn :84:2 9 <td>ml:60n></td>	ml :60 n>
5	Thermodynamics of multicaloric effects in multiferroic materials: application to metamagnetic shape-memory alloys and ferrotoroidics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150304.	3.4	23
6	Recent progress in the thermodynamics of ferrotoroidic materials. Multiferroic Materials, 2015, 1 , .	0.0	4
7	Magnetocaloric and barocaloric responses in magnetovolumic systems. Physical Review B, 2015, 91, .	3.2	11
8	Modelling Shape-Memory Effects in Ferromagnetic Alloys. Shape Memory and Superelasticity, 2015, 1, 347-358.	2.2	3
9	Modelling magnetostructural textures in magnetic shapeâ€memory alloys: Strain and magnetic glass behaviour. Physica Status Solidi (B): Basic Research, 2014, 251, 2080-2087.	1.5	6
10	Thermodynamics of Multiferroic Materials. Springer Series in Materials Science, 2014, , 73-108.	0.6	2
11	Precursor Nanoscale Textures in Ferroelastics: Interplay between Anisotropy and Disorder. Materials Science Forum, 2013, 738-739, 155-159.	0.3	3
12	Ginzburg–Landau modelling of precursor nanoscale textures in ferroelastic materials. Continuum Mechanics and Thermodynamics, 2012, 24, 619-627.	2.2	8
13	Thermodynamics of ferrotoroidic materials: Toroidocaloric effect. Physical Review B, 2012, 85, .	3.2	26
14	Precursor Nanoscale Textures in Ferroelastic Martensites. Springer Series in Materials Science, 2012, , 227-247.	0.6	7
15	Thermodynamics of stress-induced ferroelastic transitions: Influence of anisotropy and disorder. Physical Review B, 2010, 81, .	3.2	11
16	Glassy behavior in martensites: Interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments. Physical Review B, 2009, 80, .	3.2	41
17	Ferroelastic Nanostructures and Nanoscale Transitions: Ferroics with Point Defects. MRS Bulletin, 2009, 34, 838-846.	3.5	49
18	Interfaces in ferroelastics: Fringing fields, microstructure, and size and shape effects. Physical Review B, 2009, 79, .	3.2	30

#	Article	IF	Citations
19	Influence of Elastic Anisotropy on Structural Nanoscale Textures. Physical Review Letters, 2008, 100, 165707.	7.8	141
20	Spatially correlated disorder in self-organized precursor magnetic nanostructures. Physical Review B, 2007, 76, .	3.2	2
21	Spatially correlated disorder in striped precursor magnetic modulations. Journal of Magnetism and Magnetic Materials, 2007, 310, 2641-2643.	2.3	1
22	Magnetostructural tweed in ferromagnetic Heusler shape-memory alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 916-918.	5.6	4
23	Precursor nanoscale modulations in ferromagnets: Modeling and thermodynamic characterization. Physical Review B, 2005, 72, .	3.2	8
24	Magnetic phase separation in ordered alloys. Physical Review B, 2001, 63, .	3.2	9
25	Development of a tight-binding potential for bcc Zr: Application to the study of vibrational properties. Physical Review B, 2001, 63, .	3.2	7
26	Vacancy-assisted domain growth in asymmetric binary alloys: A Monte Carlo study. Physical Review B, 1999, 60, 3920-3927.	3.2	14
27	Modeling premartensitic effects inNi2MnGa: A mean-field and Monte Carlo simulation study. Physical Review B, 1999, 60, 7071-7084.	3.2	76
28	Ordering Processes in FCC and BCC Binary Alloys: A Comparative Study. Materials Science Forum, 1998, 269-272, 675-680.	0.3	0
29	Effect of the vacancy interaction on antiphase domain growth in a two-dimensional binary alloy. Physical Review B, 1997, 56, 5261-5270.	3.2	11
30	Monte Carlo study of the growth ofL12-ordered domains in fccA3B binary alloys. Physical Review B, 1997, 55, 212-225.	3.2	23
31	Unified mean-field study of ferro- and antiferromagnetic behavior of the Ising model with external field. American Journal of Physics, 1997, 65, 907-913.	0.7	16
32	Degenerate Blume-Emery-Griffiths model for the martensitic transformation. Physical Review B, 1996, 53, 8915-8921.	3.2	33
33	Monte Carlo study of the domain growth in nonstoichiometric two-dimensional binary alloys. Physical Review B, 1996, 54, 166-177.	3.2	16
34	Comment on â€~â€~Kinetics of spinodal decomposition in the Ising model with vacancy diffusion''. Physic Review B, 1996, 53, 2886-2889.	al _{3.2}	15
35	Monte Carlo simulation of interface alloying. Physical Review B, 1995, 51, 11369-11375.	3.2	4
36	Statisticoâ€thermodynamic properties of a binary alloy. American Journal of Physics, 1995, 63, 261-267.	0.7	1

#	Article	IF	CITATIONS
37	Tweed in martensites: a potential new spin glass. Physica Scripta, 1992, T42, 214-219.	2.5	24
38	Domain-growth kinetics and aspects of pinning: A Monte Carlo simulation study. Physical Review B, 1991, 43, 956-964.	3.2	8
39	Diffusionless first-order phase transitions in systems with frozen configurational degrees of freedom. Physical Review B, 1991, 44, 6715-6722.	3.2	7
40	Spin-glass nature of tweed precursors in martensitic transformations. Physical Review Letters, 1991, 67, 3630-3633.	7.8	167
41	Kinetics of slow domain growth: Then=1/4 universality class. Physical Review B, 1990, 41, 4659-4662.	3.2	4
42	Kinetics of domain growth, theory, and Monte Carlo simulations: A two-dimensional martensitic phase transition model system. Physical Review B, 1989, 40, 5069-5083.	3.2	20
43	State equation for shapeâ€memory alloys: Application to Cuâ€Znâ€Al. Journal of Applied Physics, 1989, 66, 2342-2348.	2.5	20
44	Precursor Nanoscale Strain Textures: From Cross-Hatched to Mottled Structure. , 0, , 543-548.		0