Robert J Macdowall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8671029/publications.pdf

Version: 2024-02-01

71102 62596 7,089 136 41 80 citations h-index g-index papers 137 137 137 2771 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	4.5	16
2	Flux Rope Merging and the Structure of Switchbacks in the Solar Wind. Astrophysical Journal, 2022, 925, 213.	4.5	11
3	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	8.3	28
4	Flux Enhancements of Fieldâ€Aligned Lowâ€Energy O ⁺ Ion (FALEO) in the Inner Magnetosphere: A Possible Source of Warm Plasma Cloak and Oxygen Torus. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
5	First Results From the SCM Searchâ€Coil Magnetometer on Parker Solar Probe. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	9
6	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	4.5	3
7	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Nearâ€Sun Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	4.0	15
8	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	4.0	16
9	Multiâ€Event Analysis of Plasma and Field Variations in Source of Stable Auroral Red (SAR) Arcs in Inner Magnetosphere During Nonâ€Stormâ€Time Substorms. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029081.	2.4	7
10	The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements. Astrophysical Journal, 2021, 910, 7.	4.5	4
11	Terminator Double Layer Explorer (TerDLE): Examining the Near-Moon Lunar Wake. Planetary Science Journal, 2021, 2, 61.	3.6	O
12	Evidence of Subprotonâ€Scale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	4.0	18
13	Low Radio Frequency Observations from the Moon Enabled by NASA Landed Payload Missions. Planetary Science Journal, 2021, 2, 44.	3.6	11
14	Observational Evidence for Beat Phenomenon in Complex Solar Type III Radio Bursts. Astrophysical Journal, 2021, 912, 61.	4.5	1
15	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	8.3	49
16	Simultaneous Observation of Two Isolated Proton Auroras at Subauroral Latitudes by a Highly Sensitive Allâ€6ky Camera and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029078.	2.4	7
17	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, All.	5.1	8
18	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	5.1	12

#	Article	IF	CITATIONS
19	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	5.1	12
20	Alfv $\tilde{\mathbb{A}}$ ©nic versus non-Alfv $\tilde{\mathbb{A}}$ ©nic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	5.1	29
21	Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astronomy and Astrophysics, 2021, 650, A2.	5.1	80
22	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	5.1	32
23	Switchbacks: statistical properties and deviations from Alfv \tilde{A} @nicity. Astronomy and Astrophysics, 2021, 650, A3.	5.1	37
24	Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au. Astronomy and Astrophysics, 2021, 650, A23.	5.1	13
25	Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astronomy and Astrophysics, 2021, 650, A12.	5.1	35
26	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	5.1	23
27	Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU. Astronomy and Astrophysics, 2021, 650, A18.	5.1	26
28	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	5.1	11
29	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	5.1	12
30	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	5.1	27
31	Switchback Boundary Dissipation and Relative Age. Astrophysical Journal, 2021, 915, 68.	4.5	3
32	The Sunward Electron Deficit: A Telltale Sign of the Sun's Electric Potential. Astrophysical Journal, 2021, 916, 16.	4.5	14
33	Near-Sun Switchback Boundaries: Dissipation with Solar Distance. Astrophysical Journal, 2021, 916, 84.	4.5	3
34	PSP/IS⊙IS observations of the 29 November 2020 solar energetic particle event. Astronomy and Astrophysics, 2021, 656, A29.	5.1	15
35	Fieldâ€Aligned Electron Density Distribution of the Inner Magnetosphere Inferred From Coordinated Observations of Arase and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029073.	2.4	3
36	Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe. Planetary Science Journal, 2021, 2, 186.	3.6	14

#	Article	IF	CITATIONS
37	Kineticâ€Scale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	4.0	11
38	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	8.3	25
39	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	4.5	14
40	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	4.0	16
41	Characterizing the radio quiet region behind the lunar farside for low radio frequency experiments. Advances in Space Research, 2020, 66, 1265-1275.	2.6	15
42	Observational Evidence for the Parametric Decay in a Solar Type III Radio Burst. Journal of Physics: Conference Series, 2020, 1620, 012023.	0.4	0
43	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	7.7	62
44	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	7.7	83
45	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
46	In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere. Astrophysical Journal, 2020, 892, 115.	4.5	22
47	A Merged Search oil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027813.	2.4	31
48	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	7.7	17
49	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	7.7	56
50	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	8.3	46
51	Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument. Astrophysical Journal, Supplement Series, 2020, 246, 51.	7.7	26
52	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	7.7	25
53	Detection of Extreme and Exceptional Langmuir Wave Packets in Solar Type III Radio Bursts. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027714.	2.4	3
54	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	7.8	29

#	Article	IF	CITATIONS
55	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	7.7	52
56	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
57	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	7.7	45
58	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246, 31.	7.7	37
59	First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS. Astrophysical Journal, Supplement Series, 2020, 246, 44.	7.7	106
60	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	7.7	26
61	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50
62	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	7.7	166
63	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	7.7	51
64	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	7.7	43
65	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	7.7	67
66	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	7.7	61
67	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	7.7	66
68	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^1/40.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	7.7	35
69	³ He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth. Astrophysical Journal, Supplement Series, 2020, 246, 42.	7.7	27
70	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	7.7	56
71	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	7.7	35
72	CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process. Astrophysical Journal, Supplement Series, 2020, 246, 59.	7.7	21

#	Article	IF	Citations
73	Energetic Particle Increases Associated with Stream Interaction Regions. Astrophysical Journal, Supplement Series, 2020, 246, 20.	7.7	31
74	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	7.7	30
75	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	7.7	99
76	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	7.7	57
77	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	7.7	23
78	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	7.7	86
79	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	7.7	65
80	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	7.7	27
81	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	7.7	152
82	Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. Astrophysical Journal, Supplement Series, 2020, 246, 40.	7.7	14
83	Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe's First Two Orbits. Astrophysical Journal, Supplement Series, 2020, 246, 56.	7.7	29
84	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	4.5	34
85	Measuring the Earth's Synchrotron Emission From Radiation Belts With a Lunar Near Side Radio Array. Radio Science, 2020, 55, e2019RS006891.	1.6	3
86	Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations. Earth, Planets and Space, 2020, 72, 111.	2.5	17
87	Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2. Astrophysical Journal, 2020, 902, 20.	4.5	9
88	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	4.5	22
89	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	7.7	100
90	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	7.7	115

#	Article	IF	CITATIONS
91	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	7.7	10
92	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and AlfvÃ@nic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	7.7	46
93	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> Astrophysical Journal, Supplement Series, 2020, 246, 62.	7.7	55
94	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	7.7	36
95	Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis. Astrophysical Journal, Supplement Series, 2020, 249, 28.	7.7	39
96	Evidence for Oscillating Two-stream Instability and Spatial Collapse of Langmuir Waves in a Solar Type II Radio Burst. Astrophysical Journal, 2019, 883, 199.	4.5	6
97	Characteristics of a Langmuir Soliton Observed in a Solar Type III Burst. Journal of Physics: Conference Series, 2019, 1332, 012016.	0.4	4
98	Eastward Propagating Second Harmonic Poloidal Waves Triggered by Temporary Outward Gradient of Proton Phase Space Density: Van Allen Probe A Observation. Journal of Geophysical Research: Space Physics, 2019, 124, 9904-9923.	2.4	19
99	Probing the energetic particle environment near the Sun. Nature, 2019, 576, 223-227.	27.8	103
100	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	27.8	311
101	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	27.8	401
102	Observational Evidence for Langmuir Wave Collapse in the Source Region of a Solar Type III Radio Burst. Astrophysical Journal, 2018, 862, 75.	4.5	11
103	Langmuir Solitons in Solar Type III Radio Bursts: STEREO Observations. Astrophysical Journal, 2018, 864, 122.	4.5	11
104	Interplanetary Type II Radio Bursts from Wind/WAVES and Sustained Gamma-Ray Emission from Fermi/LAT: Evidence for Shock Source. Astrophysical Journal Letters, 2018, 868, L19.	8.3	30
105	Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A. Geophysical Research Letters, 2018, 45, 10,177.	4.0	18
106	Van Allen Probes Observations of Driftâ∈Bounce Resonance and Energy Transfer Between Energetic Ring Current Protons and Poloidal Pc4 Wave. Journal of Geophysical Research: Space Physics, 2018, 123, 3421-3435.	2.4	22
107	Van Allen Probes observations of magnetic field dipolarization and its associated O ⁺ flux variations in the inner magnetosphere at <i>L</i> < 6.6. Journal of Geophysical Research: Space Physics, 2016, 121, 7572-7589.	2.4	28
108	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	8.1	521

#	Article	IF	CITATIONS
109	Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 4748-4762.	2.4	66
110	Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 2015, 120, 1182-1196.	2.4	46
111	Wave-wave interactions in solar type III radio bursts. AIP Conference Proceedings, 2014, , .	0.4	3
112	Excitation of poloidal standing Alfvén waves through drift resonance waveâ€particle interaction. Geophysical Research Letters, 2013, 40, 4127-4132.	4.0	134
113	The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Science Reviews, 2013, 179, 127-181.	8.1	932
114	Van Allen Probes observation of localized drift resonance between poloidal mode ultraâ€low frequency waves and 60 keV electrons. Geophysical Research Letters, 2013, 40, 4491-4497.	4.0	127
115	Observational evidence for the collapsing Langmuir wave packet in a solar type III radio burst. Journal of Geophysical Research: Space Physics, 2013, 118, 4039-4052.	2.4	17
116	Detection of collapsing Langmuir wave packets in solar type III radio bursts. AIP Conference Proceedings, 2013, , .	0.4	6
117	Evidence for four- and three-wave interactions in solar type III radio emissions. Annales Geophysicae, 2013, 31, 1417-1428.	1.6	17
118	EMISSION PATTERNS OF SOLAR TYPE III RADIO BURSTS: STEREOSCOPIC OBSERVATIONS. Astrophysical Journal, 2012, 745, 187.	4.5	20
119	Phase coupling in Langmuir wave packets: Evidence of four wave interactions in solar type III radio bursts. Geophysical Research Letters, 2012, 39, .	4.0	16
120	EVIDENCE FOR THE OSCILLATING TWO STREAM INSTABILITY AND SPATIAL COLLAPSE OF LANGMUIR WAVES IN A SOLAR TYPE III RADIO BURST. Astrophysical Journal Letters, 2012, 747, L1.	8.3	58
121	In situ detection of strong Langmuir turbulence processes in solar type III radio bursts. Journal of Geophysical Research, 2012, 117, .	3.3	27
122	S/WAVES: The Radio and Plasma Wave Investigation onÂtheÂSTEREO Mission. Space Science Reviews, 2008, 136, 487-528.	8.1	313
123	Effects of Scattering on Radio Emission from the Quiet Sun at Low Frequencies. Astrophysical Journal, 2008, 676, 1338-1345.	4.5	65
124	Monte Carlo Simulation of Directivity of Interplanetary Radio Bursts. Astrophysical Journal, 2007, 671, 894-906.	4.5	44
125	Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora. Journal of Geophysical Research, 2005, 110 , .	3.3	149
126	High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions. Nonlinear Processes in Geophysics, 2004, 11, 411-420.	1.3	13

#	Article	IF	CITATIONS
127	Long-duration hectometric type III radio bursts and their association with solar energetic particle (SEP) events. Geophysical Research Letters, 2003, 30, .	4.0	32
128	Evidence for electrostatic decay in the solar wind at 5.2 AU. Journal of Geophysical Research, 2003, 108 , .	3.3	26
129	Langmuir Waves in the Vicinity of interplanetary Shocks and the Consequences for Type II Burst Models. Astrophysical Journal, 2000, 544, L163-L167.	4.5	18
130	Evidence for Langmuir envelope solitons in solar type III burst source regions. Journal of Geophysical Research, 1999, 104, 28279-28293.	3.3	30
131	Very low frequency waves in the heliosphere: Ulysses observations. Journal of Geophysical Research, 1998, 103, 12023-12035.	3.3	32
132	Evidence for Strong and Weak Turbulence Processes in the Source Region of a Local Type III Radio Burst. Astrophysical Journal, 1998, 498, 465-478.	4.5	52
133	Ulysses observations of whistler waves at interplanetary shocks and in the solar wind. Journal of Geophysical Research, 1996, 101, 27555-27564.	3.3	40
134	Effects of interplanetary shocks on kilometric type III radio bursts. Geophysical Research Letters, 1989, 16, 923-926.	4.0	18
135	Solar flare nuclear gamma-rays and interplanetary proton events. Astrophysical Journal, 1989, 343, 953.	4.5	71
136	Characteristics of shock-associated fast-drift kilometric radio bursts. Solar Physics, 1987, 111, 397-418.	2.5	29