Haobin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670821/publications.pdf

Version: 2024-02-01

257450 265206 42 48 1,843 24 h-index citations g-index papers 48 48 48 2715 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced Phototherapy by Nanoparticle-Enzyme via Generation and Photolysis of Hydrogen Peroxide. Nano Letters, 2017, 17, 4323-4329.	9.1	188
2	Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy. Biomaterials, 2017, 144, 42-52.	11.4	107
3	Ultrasmall Semiconducting Polymer Dots with Rapid Clearance for Second Nearâ€Infrared Photoacoustic Imaging and Photothermal Cancer Therapy. Advanced Functional Materials, 2020, 30, 1909673.	14.9	107
4	Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Applied Catalysis B: Environmental, 2016, 187, 367-374.	20.2	100
5	Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics, 2018, 8, 663-675.	10.0	99
6	Conjugated Polymer Dots for Ultraâ€Stable Fullâ€Color Fluorescence Patterning. Small, 2014, 10, 4270-4275.	10.0	78
7	Covalent Patterning and Rapid Visualization of Latent Fingerprints with Photo-Cross-Linkable Semiconductor Polymer Dots. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14477-14484.	8.0	77
8	Size-Dependent Property and Cell Labeling of Semiconducting Polymer Dots. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10802-10812.	8.0	74
9	Facile Synthesis, Macroscopic Separation, E/Z Isomerization, and Distinct AIE properties of Pure Stereoisomers of an Oxetane-Substituted Tetraphenylethene Luminogen. Chemistry of Materials, 2016, 28, 6628-6636.	6.7	71
10	Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chemical Science, 2017, 8, 3390-3398.	7.4	67
11	Therapeutic Considerations and Conjugated Polymerâ€Based Photosensitizers for Photodynamic Therapy. Macromolecular Rapid Communications, 2018, 39, 1700614.	3.9	67
12	Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & English & E	8.0	56
13	Multicolor Photoâ€Crosslinkable AlEgens toward Compact Nanodots for Subcellular Imaging and STED Nanoscopy. Small, 2017, 13, 1702128.	10.0	56
14	An ultra-small thermosensitive nanocomposite with a Mo ₁₅₄ -core as a comprehensive platform for NIR-triggered photothermal-chemotherapy. Journal of Materials Chemistry B, 2018, 6, 241-248.	5.8	37
15	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 12007-12012.	13.8	37
16	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21200-21208.	8.0	36
17	A PIID-DTBT based semi-conducting polymer dots with broad and strong optical absorption in the visible-light region: Highly effective contrast agents for multiscale and multi-spectral photoacoustic imaging. Nano Research, 2017, 10, 64-76.	10.4	36
18	Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host–Guest Interactions, and Enhanced Drug/siRNA Delivery. Small, 2018, 14, e1800239.	10.0	34

#	Article	IF	Citations
19	Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26928-26935.	8.0	30
20	Facile fabrication of TiO2/Graphene composite foams with enhanced photocatalytic properties. Journal of Alloys and Compounds, 2017, 703, 251-257.	5.5	28
21	Nearâ€Infrared Broadband Polymerâ€Dot Modulator with High Optical Nonlinearity for Ultrafast Pulsed Lasers. Laser and Photonics Reviews, 2019, 13, 1800326.	8.7	28
22	Highly Efficient and Robust Broadband Nanoâ€VO ₂ (M) Saturable Absorber for Nonlinear Optics and Ultrafast Photonics. Advanced Optical Materials, 2021, 9, 2100795.	7.3	28
23	Dualâ€Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2020, 59, 16173-16180.	13.8	27
24	Highâ€Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Singleâ€Molecule Sensitive Flow Technique and Transistorâ€like Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 13470-13475.	13.8	27
25	Passively Mode-Locked Operations Induced by Semiconducting Polymer Nanoparticles and a Side-Polished Fiber. ACS Applied Materials & Side-Polished Fiber. ACS Applied Fiber. ACS Applied Fiber. ACS ACS Applied Fiber. ACS	8.0	25
26	Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography. BioMed Research International, 2015, 2015, 1-11.	1.9	23
27	Mesoporous Carbon Nanospheres as Broadband Saturable Absorbers for Pulsed Laser Generation. Advanced Optical Materials, 2018, 6, 1800606.	7.3	23
28	Thermosensitive Polymer Dot Nanocomposites for Trimodal Computed Tomography/Photoacoustic/Fluorescence Imaging-Guided Synergistic Chemo-Photothermal Therapy. ACS Applied Materials & Diterfaces, 2020, 12, 51174-51184.	8.0	23
29	Semiconducting polymer dots as broadband saturable absorbers for Q-switched fiber lasers. Journal of Materials Chemistry C, 2020, 8, 4919-4925.	5.5	23
30	Enhanced bandwidth of white light communication using nanomaterial phosphors. Nanotechnology, 2018, 29, 455708.	2.6	21
31	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie - International Edition, 2021, 60, 19331-19336.	13.8	19
32	Semiconducting Polymer Dots with Modulated Photoblinking for Highâ€Order Superâ€Resolution Optical Fluctuation Imaging. Advanced Optical Materials, 2019, 7, 1900007.	7.3	18
33	Enhancing the Longâ€Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Advanced Healthcare Materials, 2021, 10, e2001019.	7.6	18
34	Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety. Antibiotics, 2021, 10, 358.	3.7	18
35	Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging. ChemBioChem, 2019, 20, 521-525.	2.6	17
36	Silica-encapsulated semiconductor polymer dots as stable phosphors for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 7281-7285.	5.5	13

#	Article	IF	CITATIONS
37	Multimode Time-Resolved Superresolution Microscopy Revealing Chain Packing and Anisotropic Single Carrier Transport in Conjugated Polymer Nanowires. Nano Letters, 2021, 21, 4255-4261.	9.1	13
38	Fabrication and photoelectric properties of bio-inspired honeycomb film based on semiconducting polymer. Journal of Colloid and Interface Science, 2018, 512, 1-6.	9.4	11
39	Second near-infrared photoactivatable biocompatible polymer nanoparticles for effective <i>in vitro</i> and <i>in vivo</i> cancer theranostics. Nanoscale, 2021, 13, 13410-13420.	5.6	11
40	Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Analytical Chemistry, 2021, 93, 2359-2366.	6.5	11
41	Lightâ€Induced PEGylation and Functionalization of Semiconductor Polymer Dots. ChemNanoMat, 2017, 3, 755-759.	2.8	10
42	Conjugated polymer dots for biocompatible siRNA delivery. New Journal of Chemistry, 2019, 43, 14443-14449.	2.8	10
43	OCT imaging detection of brain blood vessels in mouse, based on semiconducting polymer nanoparticles. Analyst, The, 2017, 142, 4503-4510.	3.5	9
44	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 12114-12119.	2.0	8
45	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie, 2021, 133, 19480-19485.	2.0	8
46	White light-emitting diodes of high color rendering index with polymer dot phosphors. RSC Advances, 2016, 6, 106225-106229.	3.6	7
47	Highâ€Throughput Counting and Superresolution Mapping of Tetraspanins on Exosomes Using a Singleâ€Molecule Sensitive Flow Technique and Transistorâ€like Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 13582-13587.	2.0	5
48	Dualâ€Mode Superresolution Imaging Using Charge Transfer Dynamics in Semiconducting Polymer Dots. Angewandte Chemie, 2020, 132, 16307-16314.	2.0	4