Kejin Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670551/publications.pdf Version: 2024-02-01

KEUN HU

#	Article	IF	CITATIONS
1	Evaluating Reprogramming Efficiency and Pluripotency of the Established Human iPSCS by Pluripotency Markers. Methods in Molecular Biology, 2021, 2239, 235-249.	0.9	5
2	Become Competent in Generating RNA-Seq Heat Maps in One Day for Novices Without Prior R Experience. Methods in Molecular Biology, 2021, 2239, 269-303.	0.9	37
3	Reprogramming Human Fibroblasts to Induced Pluripotent Stem Cells Using the GFP-Marked Lentiviral Vectors in the Chemically Defined Medium. Methods in Molecular Biology, 2021, 2239, 101-116.	0.9	4
4	Become Competent within One Day in Generating Boxplots and Violin Plots for a Novice without Prior R Experience. Methods and Protocols, 2020, 3, 64.	2.0	56
5	Profiling and quantification of pluripotency reprogramming reveal that WNT pathways and cell morphology have to be reprogramed extensively. Heliyon, 2020, 6, e04035.	3.2	9
6	Quick, Coordinated and Authentic Reprogramming of Ribosome Biogenesis during iPSC Reprogramming. Cells, 2020, 9, 2484.	4.1	7
7	A PIANO (Proper, Insufficient, Aberrant, and NO Reprogramming) Response to the Yamanaka Factors in the Initial Stages of Human iPSC Reprogramming. International Journal of Molecular Sciences, 2020, 21, 3229.	4.1	7
8	Human transcription factors responsive to initial reprogramming predominantly undergo legitimate reprogramming during fibroblast conversion to iPSCs. Scientific Reports, 2020, 10, 19710.	3.3	9
9	On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote?. Stem Cells and Development, 2019, 28, 897-906.	2.1	10
10	Ubiquitin regulates TORC1 in yeast <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> . Molecular Microbiology, 2016, 100, 303-314.	2.5	9
11	The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis. Nature Communications, 2016, 7, 10869.	12.8	28
12	Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains. Cell Reports, 2016, 16, 3138-3145.	6.4	28
13	The Universal 3D3 Antibody of Human PODXL Is Pluripotent Cytotoxic, and Identifies a Residual Population After Extended Differentiation of Pluripotent Stem Cells. Stem Cells and Development, 2016, 25, 556-568.	2.1	25
14	Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells. Stem Cell Research, 2015, 15, 678-693.	0.7	33
15	Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming. Stem Cells and Development, 2014, 23, 1301-1315.	2.1	48
16	All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells and Development, 2014, 23, 1285-1300.	2.1	87
17	Induced Pluripotent Stem Cell Model of Chronic Myeloid Leukemia Revealed Olfactomedin 4 As a Novel Survival Factor for Primitive Leukemia Cells. Blood, 2014, 124, 397-397.	1.4	1
18	Generation of Transgene-Free iPSC Lines from Human Normal and Neoplastic Blood Cells Using Episomal Vectors. Methods in Molecular Biology, 2013, 997, 163-176.	0.9	23

Κειιν Ηυ

#	Article	IF	CITATIONS
19	Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood, 2011, 117, e109-e119.	1.4	231
20	Modeling CML Development and Drug Resistance Using iPSC Technology,. Blood, 2011, 118, 3767-3767.	1.4	1
21	Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science, 2009, 324, 797-801.	12.6	2,167
22	A Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in the Caenorhabditis elegans postembryonic mesoderm. Development (Cambridge), 2007, 134, 19-29.	2.5	28
23	Intron exclusion and the mystery of intron loss. FEBS Letters, 2006, 580, 6361-6365.	2.8	25
24	Complete, precise, and innocuous loss of multiple introns in the currently intronless, active cathepsin L-like genes, and inference from this event. Molecular Phylogenetics and Evolution, 2006, 38, 685-696.	2.7	11
25	Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials. Carbohydrate Polymers, 2004, 58, 45-52.	10.2	61