
Makoto Tominaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 by mosquito and mouse saliva. Pain, 2022, 163, 299-307.	4.2	6
2	Fine-Tuning of Piezo1 Expression and Activity Ensures Efficient Myoblast Fusion during Skeletal Myogenesis. Cells, 2022, 11, 393.	4.1	12
3	The Mechanism of Pertussis Cough Revealed by the Mouse-Coughing Model. MBio, 2022, 13, e0319721.	4.1	8
4	Physiological and Pathological Significance of Esophageal TRP Channels: Special Focus on TRPV4 in Esophageal Epithelial Cells. International Journal of Molecular Sciences, 2022, 23, 4550.	4.1	4
5	Thermal gradient ring reveals different temperature-dependent behaviors in mice lacking thermosensitive TRP channels. Journal of Physiological Sciences, 2022, 72, .	2.1	7
6	Thermal gradient ring reveals thermosensory changes in diabetic peripheral neuropathy in mice. Scientific Reports, 2022, 12, .	3.3	3
7	TRP channels in thermosensation. Current Opinion in Neurobiology, 2022, 75, 102591.	4.2	40
8	Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1. Journal of Biological Chemistry, 2022, 298, 102271.	3.4	4
9	Structural basis for promiscuous action of monoterpenes on TRP channels. Communications Biology, 2021, 4, 293.	4.4	23
10	5,6â€dihydroxyâ€8Z,11Z,14Z,17Zâ€eicosatetraenoic acid accelerates the healing of colitis by inhibiting transient receptor potential vanilloid 4â€mediated signaling. FASEB Journal, 2021, 35, e21238.	0.5	8
11	Comparisons in temperature and photoperiodic-dependent diapause induction between domestic and wild mulberry silkworms. Scientific Reports, 2021, 11, 8052.	3.3	8
12	Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement. Proceedings of the United States of America, 2021, 118, .	7.1	24
13	A unique mode of keratinocyte death requires intracellular acidification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
14	Involvement of pore helix in voltage-dependent inactivation of TRPM5 channel. Heliyon, 2021, 7, e06102.	3.2	0
15	Temperature elevation in epileptogenic foci exacerbates epileptic discharge through TRPV4 activation. Laboratory Investigation, 2020, 100, 274-284.	3.7	19
16	Transient Receptor Potential Vanilloid 4 Regulation of Adenosine Triphosphate Release by the Adenosine Triphosphate Transporter Vesicular Nucleotide Transporter, a Novel Therapeutic Target for Gastrointestinal Baroreception and Chronic Inflammation. Digestion, 2020, 101, 6-11.	2.3	8
17	Increased TRPV4 expression in non-myelinating Schwann cells is associated with demyelination after sciatic nerve injury. Communications Biology, 2020, 3, 716.	4.4	10
18	The structure of lipid nanodisc-reconstituted TRPV3 reveals the gating mechanism. Nature Structural and Molecular Biology, 2020, 27, 645-652.	8.2	51

#	Article	IF	CITATIONS
19	Emerging Perspectives on Pain Management by Modulation of TRP Channels and ANO1. International Journal of Molecular Sciences, 2019, 20, 3411.	4.1	38
20	Elucidating the functional evolution of heat sensors among <i>Xenopus</i> species adapted to different thermal niches by ancestral sequence reconstruction. Molecular Ecology, 2019, 28, 3561-3571.	3.9	12
21	Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24359-24365.	7.1	44
22	Cheek Injection Model for Simultaneous Measurement of Pain and Itch-related Behaviors. Journal of Visualized Experiments, 2019, , .	0.3	6
23	Identification and classification of a new TRPM3 variant (Î ³ subtype). Journal of Physiological Sciences, 2019, 69, 623-634.	2.1	8
24	TRPM8 channel is involved in the ventilatory response to CO2 mediating hypercapnic Ca2+ responses. Respiratory Physiology and Neurobiology, 2019, 263, 20-25.	1.6	3
25	Involvement of TRPM2 and TRPM8 in temperature-dependent masking behavior. Scientific Reports, 2019, 9, 3706.	3.3	7
26	Identification of molecular targets for toxic action by persulfate, an industrial sulfur compound. NeuroToxicology, 2019, 72, 29-37.	3.0	4
27	Functional Changes and Their Structural Basis for Thermal Sensor TRP Channels Related to Evolutionary Adaptation. Seibutsu Butsuri, 2019, 59, 005-008.	0.1	1
28	Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli. Scientific Reports, 2019, 9, 20200.	3.3	14
29	FK506 (tacrolimus) causes pain sensation through the activation of transient receptor potential ankyrin 1 (TRPA1) channels. Journal of Physiological Sciences, 2019, 69, 305-316.	2.1	11
30	Involvement of nociceptive transient receptor potential channels in repellent action of pulegone. Biochemical Pharmacology, 2018, 151, 89-95.	4.4	5
31	Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban <i>Anolis</i> lizards. Molecular Ecology, 2018, 27, 2234-2242.	3.9	14
32	Hypotonicity-induced cell swelling activates TRPA1. Journal of Physiological Sciences, 2018, 68, 431-440.	2.1	17
33	TRPV4 heats up ANO1â€dependent exocrine gland fluid secretion. FASEB Journal, 2018, 32, 1841-1854.	0.5	30
34	Identification of the molecular target of crotamiton, an anti–itch agent. Pain Research, 2018, 33, 47-57.	0.1	0
35	Physiological significances of TRP–ANO1 interaction. Pain Research, 2018, 33, 1-9.	0.1	1
36	Involvement of TRPV1-ANO1 Interactions in Pain-Enhancing Mechanisms. Advances in Experimental Medicine and Biology, 2018, 1099, 29-36.	1.6	8

Μακοτο Τομιναςα

#	Article	IF	CITATIONS
37	The ATP Transporter VNUT Mediates Induction of Dectin-1-Triggered Candida Nociception. IScience, 2018, 6, 306-318.	4.1	43
38	Role of Thermo-Sensitive Transient Receptor Potential Channels in Brown Adipose Tissue. Biological and Pharmaceutical Bulletin, 2018, 41, 1135-1144.	1.4	30
39	Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nature Communications, 2018, 9, 2049.	12.8	127
40	HsTRPA of the Red Imported Fire Ant, <i>Solenopsis invicta</i> , Functions as a Nocisensor and Uncovers the Evolutionary Plasticity of HsTRPA Channels. ENeuro, 2018, 5, ENEURO.0327-17.2018.	1.9	9
41	Expression of the TRPM6 in mouse placental trophoblasts; potential role in maternal–fetal calcium transport. Journal of Physiological Sciences, 2017, 67, 151-162.	2.1	9
42	The molecular and cellular mechanisms of itch and the involvement ofÂTRP channels in the peripheral sensory nervous system and skin. Allergology International, 2017, 66, 22-30.	3.3	86
43	4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1 channel activities. Scientific Reports, 2017, 7, 43132.	3.3	21
44	Lysophosphatidic acidâ€induced itch is mediated by signalling of LPA ₅ receptor, phospholipase D and TRPA1/TRPV1. Journal of Physiology, 2017, 595, 2681-2698.	2.9	79
45	Requirement of extracellular Ca ²⁺ binding to specific amino acids for heatâ€evoked activation of TRPA1. Journal of Physiology, 2017, 595, 2451-2463.	2.9	11
46	Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects. Pflugers Archiv European Journal of Physiology, 2017, 469, 1313-1323.	2.8	20
47	Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature, 2017, 4, 141-152.	3.0	42
48	Dependence of heat-evoked TRPA1 activation on extracellular Ca2+. Channels, 2017, 11, 271-272.	2.8	2
49	10â€oxoâ€12(<i>Z</i>)â€octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB Journal, 2017, 31, 5036-5048.	0.5	65
50	Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae. Scientific Reports, 2017, 7, 2173.	3.3	15
51	β-Eudesmol, an oxygenized sesquiterpene, stimulates appetite via TRPA1 and the autonomic nervous system. Scientific Reports, 2017, 7, 15785.	3.3	26
52	The TRPM2 channel: A thermo-sensitive metabolic sensor. Channels, 2017, 11, 426-433.	2.8	45
53	Involvement of thermosensitive TRP channels in energy metabolism. Journal of Physiological Sciences, 2017, 67, 549-560.	2.1	69
54	Nociceptors Boost the Resolution of Fungal Osteoinflammation via the TRP Channel-CGRP-Jdp2 Axis. Cell Reports, 2017, 19, 2730-2742.	6.4	75

#	Article	IF	CITATIONS
55	TRPV2 regulates BAT thermogenesis and differentiation. Channels, 2017, 11, 94-96.	2.8	21
56	Glycine release from astrocytes via functional reversal of GlyT1. Journal of Neurochemistry, 2017, 140, 395-403.	3.9	43
57	Cyclic ADP-Ribose and Heat Regulate Oxytocin Release via CD38 and TRPM2 in the Hypothalamus during Social or Psychological Stress in Mice. Frontiers in Neuroscience, 2016, 10, 304.	2.8	33
58	Infantile Pain Episodes Associated with Novel Nav1.9 Mutations in Familial Episodic Pain Syndrome in Japanese Families. PLoS ONE, 2016, 11, e0154827.	2.5	38
59	TRPA1 Channels in Drosophila and Honey Bee Ectoparasitic Mites Share Heat Sensitivity and Temperature-Related Physiological Functions. Frontiers in Physiology, 2016, 7, 447.	2.8	12
60	Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches. Journal of Biological Chemistry, 2016, 291, 11446-11459.	3.4	37
61	Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Scientific Reports, 2016, 6, 37460.	3.3	45
62	TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation. Scientific Reports, 2016, 6, 26088.	3.3	56
63	TRPV4 associates environmental temperature and sex determination in the American alligator. Scientific Reports, 2016, 5, 18581.	3.3	66
64	Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes. Pflugers Archiv European Journal of Physiology, 2016, 468, 1527-1540.	2.8	37
65	Lack of <scp>TRPV</scp> 2 impairs thermogenesis in mouse brown adipose tissue. EMBO Reports, 2016, 17, 383-399.	4.5	71
66	Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8. Journal of Physiological Sciences, 2016, 66, 143-155.	2.1	51
67	Stimulationâ€dependent gating of TRPM3 channel in planar lipid bilayers. FASEB Journal, 2016, 30, 1306-1316.	0.5	32
68	Transient receptor potential vanilloid 4-dependent calcium influx and ATP release in mouse and rat gastric epithelia. World Journal of Gastroenterology, 2016, 22, 5512.	3.3	25
69	Identification of Significant Amino Acids in Multiple Transmembrane Domains of Human Transient Receptor Potential Ankyrin 1 (TRPA1) for Activation by Eudesmol, an Oxygenized Sesquiterpene in Hop Essential Oil. Journal of Biological Chemistry, 2015, 290, 3161-3171.	3.4	23
70	Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets. Journal of Biological Chemistry, 2015, 290, 12435-12442.	3.4	18
71	Propofol-induced pain sensation involves multiple mechanisms in sensory neurons. Pflugers Archiv European Journal of Physiology, 2015, 467, 2011-2020.	2.8	26
72	Polysulfide Evokes Acute Pain through the Activation of Nociceptive TRPA1 in Mouse Sensory Neurons. Molecular Pain, 2015, 11, s12990-015-0023.	2.1	61

#	Article	IF	CITATIONS
73	Trpm7 Protein Contributes to Intercellular Junction Formation in Mouse Urothelium. Journal of Biological Chemistry, 2015, 290, 29882-29892.	3.4	12
74	TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Archiv European Journal of Physiology, 2015, 467, 2495-2507.	2.8	66
75	Functional diversity and evolutionary dynamics of thermoTRP channels. Cell Calcium, 2015, 57, 214-221.	2.4	65
76	Hippocampal neuronal maturation triggers post-synaptic clustering of brain temperature-sensor TRPV4. Biochemical and Biophysical Research Communications, 2015, 458, 168-173.	2.1	30
77	The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia. FASEB Journal, 2015, 29, 182-192.	0.5	70
78	Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5213-5218.	7.1	121
79	Protease-Activated Receptor-2 Up-Regulates Transient Receptor Potential Vanilloid 4 Function in Mouse Esophageal Keratinocyte. Digestive Diseases and Sciences, 2015, 60, 3570-3578.	2.3	11
80	Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB Journal, 2014, 28, 2238-2248.	0.5	90
81	Intrathecal AAV Serotype 9-mediated Delivery of shRNA Against TRPV1 Attenuates Thermal Hyperalgesia in a Mouse Model of Peripheral Nerve Injury. Molecular Therapy, 2014, 22, 409-419.	8.2	48
82	Interaction between TRP and Ca2+-activated chloride channels. Channels, 2014, 8, 178-179.	2.8	5
83	Molecular Basis Determining Inhibition/Activation of Nociceptive Receptor TRPA1 Protein. Journal of Biological Chemistry, 2014, 289, 31927-31939.	3.4	32
84	Inhibitory effects of monoterpenes on human TRPA1 and the structural basis of their activity. Journal of Physiological Sciences, 2014, 64, 47-57.	2.1	54
85	Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, <i>Bombyx mori</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1249-55.	7.1	86
86	Involvement of cAMP/EPAC/TRPM2 Activation in Glucose- and Incretin-Induced Insulin Secretion. Diabetes, 2014, 63, 3394-3403.	0.6	55
87	Heat and AITC activate green anole TRPA1 in a membrane-delimited manner. Pflugers Archiv European Journal of Physiology, 2014, 466, 1873-1884.	2.8	25
88	The role of TRPM2 in pancreatic β-cells and the development of diabetes. Cell Calcium, 2014, 56, 332-339.	2.4	40
89	Heat and Noxious Chemical Sensor, Chicken TRPA1, as a Target of Bird Repellents and Identification of Its Structural Determinants by Multispecies Functional Comparison. Molecular Biology and Evolution, 2014, 31, 708-722.	8.9	73
90	A Novel Subtype of Astrocytes Expressing TRPV4 (Transient Receptor Potential Vanilloid 4) Regulates Neuronal Excitability via Release of Gliotransmitters. Journal of Biological Chemistry, 2014, 289, 14470-14480.	3.4	92

ΜΑΚΟΤΟ ΤΟΜΙΝΑGΑ

#	Article	IF	CITATIONS
91	Functional Role for Piezo1 in Stretch-evoked Ca2+ Influx and ATP Release in Urothelial Cell Cultures. Journal of Biological Chemistry, 2014, 289, 16565-16575.	3.4	231
92	Potential role of transient receptor potential (TRP) channels in bladder cancer cells. Journal of Physiological Sciences, 2014, 64, 305-314.	2.1	37
93	Role of transient receptor potential vanilloid 4 activation in indomethacin-induced intestinal damage. American Journal of Physiology - Renal Physiology, 2014, 307, G33-G40.	3.4	26
94	Activation and Inhibition of Thermosensitive TRP Channels by Voacangine, an Alkaloid Present in <i>Voacanga africana,</i> an African Tree. Journal of Natural Products, 2014, 77, 285-297.	3.0	24
95	Involvement of TRPA1 Activation in Acute Pain Induced by Cadmium in Mice. Molecular Pain, 2013, 9, 1744-8069-9-7.	2.1	41
96	Identification of Molecular Determinants for a Potent Mammalian TRPA1 Antagonist by Utilizing Species Differences. Journal of Molecular Neuroscience, 2013, 51, 754-762.	2.3	31
97	TRPM2 contributes to antigen-stimulated Ca2+ influx in mucosal mast cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 1023-1030.	2.8	31
98	Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nature Communications, 2013, 4, 2399.	12.8	64
99	Ambient Temperature Affects the Temperature Threshold for TRPM8 Activation through Interaction of Phosphatidylinositol 4,5-Bisphosphate. Journal of Neuroscience, 2013, 33, 6154-6159.	3.6	62
100	Astrocytic TRPV1 ion channels detect bloodâ€borne signals in the sensory circumventricular organs of adult mouse brains. Glia, 2013, 61, 957-971.	4.9	54
101	Thermo-Sensitive Barrier : The Importance of Transient Receptor Potential Vanilloid 4 (TRPV4) in Epidermal Barrier Function. Journal of Society of Cosmetic Chemists of Japan, 2013, 47, 108-118.	0.1	1
102	Molecular Cloning and Functional Characterization of Xenopus tropicalis Frog Transient Receptor Potential Vanilloid 1 Reveal Its Functional Evolution for Heat, Acid, and Capsaicin Sensitivities in Terrestrial Vertebrates. Journal of Biological Chemistry, 2012, 287, 2388-2397.	3.4	40
103	Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6745-6750.	7.1	139
104	Analysis of Transient Receptor Potential Ankyrin 1 (TRPA1) in Frogs and Lizards Illuminates Both Nociceptive Heat and Chemical Sensitivities and Coexpression with TRP Vanilloid 1 (TRPV1) in Ancestral Vertebrates. Journal of Biological Chemistry, 2012, 287, 30743-30754.	3.4	77
105	Transient Receptor Potential Vanilloid 1 — a Polymodal Nociceptive Receptor — Plays a Crucial Role in Formaldehyde-Induced Skin Inflammation in Mice. Journal of Pharmacological Sciences, 2012, 118, 266-274.	2.5	11
106	1,8-Cineole, a TRPM8 Agonist, is a Novel Natural Antagonist of Human TRPA1. Molecular Pain, 2012, 8, 1744-8069-8-86.	2.1	96
107	Isothiocyanates from Wasabia japonica Activate Transient Receptor Potential Ankyrin 1 Channel. Chemical Senses, 2012, 37, 809-818.	2.0	19

108 Patch-Clamp Biosensor Method. Springer Protocols, 2012, , 333-342.

0.3 1

#	Article	IF	CITATIONS
109	Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Archiv European Journal of Physiology, 2012, 463, 715-725.	2.8	95
110	Activation of transient receptor potential A1 by a nonâ€pungent capsaicinâ€like compound, capsiate. British Journal of Pharmacology, 2012, 165, 1476-1486.	5.4	56
111	Primary alcohols activate human TRPA1 channel in a carbon chain length-dependent manner. Pflugers Archiv European Journal of Physiology, 2012, 463, 549-559.	2.8	37
112	Temperature-Evoked Channel Activation: Simultaneous Detection of Ionic Currents and Temperature. Springer Protocols, 2012, , 343-351.	0.3	0
113	Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice. Diabetes, 2011, 60, 119-126.	0.6	163
114	The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion [Review]. Endocrine Journal, 2011, 58, 1021-1028.	1.6	73
115	Transient receptor potential vanilloid 4 (TRPV4)â€dependent calcium influx and ATP release in mouse oesophageal keratinocytes. Journal of Physiology, 2011, 589, 3471-3482.	2.9	95
116	TRPM2 modulates insulin secretion in pancreatic \hat{l}^2 -cells. Islets, 2011, 3, 209-211.	1.8	30
117	Unusual Pungency from Extra-Virgin Olive Oil Is Attributable to Restricted Spatial Expression of the Receptor of Oleocanthal. Journal of Neuroscience, 2011, 31, 999-1009.	3.6	119
118	Evolution of Vertebrate Transient Receptor Potential Vanilloid 3 Channels: Opposite Temperature Sensitivity between Mammals and Western Clawed Frogs. PLoS Genetics, 2011, 7, e1002041.	3.5	67
119	é,味å⊷å®1ã®ãfjã,«ãf‹ã,ºãf ã,ªãf•応ç"ã,'å¸ã,‹å^†åãë生物å¦çš"æ"義. Kagaku To Seibutsu, 2010, 48, 4]	9 4.2 3.	0
120	Metabolic adaptation of mice in a cool environment. Pflugers Archiv European Journal of Physiology, 2010, 459, 765-774.	2.8	26
121	The TRPV4 Channel Contributes to Intercellular Junction Formation in Keratinocytes. Journal of Biological Chemistry, 2010, 285, 18749-18758.	3.4	163
122	TRPV2 Enhances Axon Outgrowth through Its Activation by Membrane Stretch in Developing Sensory and Motor Neurons. Journal of Neuroscience, 2010, 30, 4601-4612.	3.6	163
123	Involvement of TRPV2 Activation in Intestinal Movement through Nitric Oxide Production in Mice. Journal of Neuroscience, 2010, 30, 16536-16544.	3.6	75
124	Honey Bee Thermal/Chemical Sensor, AmHsTRPA, Reveals Neofunctionalization and Loss of Transient Receptor Potential Channel Genes. Journal of Neuroscience, 2010, 30, 12219-12229.	3.6	69
125	The TRPV4 cation channel. Communicative and Integrative Biology, 2010, 3, 619-621.	1.4	56
126	The TRPV4 Cation Channel Mediates Stretch-evoked Ca2+ Influx and ATP Release in Primary Urothelial Cell Cultures. Journal of Biological Chemistry, 2009, 284, 21257-21264.	3.4	254

#	Article	IF	CITATIONS
127	Evolutionary conservation and changes in insect TRP channels. BMC Evolutionary Biology, 2009, 9, 228.	3.2	110
128	TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Archiv European Journal of Physiology, 2009, 458, 1093-1102.	2.8	218
129	Miogadial and miogatrial with α,β-unsaturated 1,4-dialdehyde moieties—Novel and potent TRPA1 agonists. Life Sciences, 2009, 85, 60-69.	4.3	49
130	Thermal Sensation (Cold and Heat) through Thermosensitive TRP Channel Activation. , 2008, , 127-131.		1
131	Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain, 2008, 131, 1241-1251.	7.6	232
132	<i>Drosophila</i> Painless Is a Ca ²⁺ -Requiring Channel Activated by Noxious Heat. Journal of Neuroscience, 2008, 28, 9929-9938.	3.6	99
133	Intracellular alkalization causes pain sensation through activation of TRPA1 in mice. Journal of Clinical Investigation, 2008, 118, 4049-4057.	8.2	114
134	α-Klotho as a Regulator of Calcium Homeostasis. Science, 2007, 316, 1615-1618.	12.6	371
135	Effects of Body Temperature on Neural Activity in the Hippocampus: Regulation of Resting Membrane Potentials by Transient Receptor Potential Vanilloid 4. Journal of Neuroscience, 2007, 27, 1566-1575.	3.6	260
136	Effects of Skin Surface Temperature on Epidermal Permeability Barrier Homeostasis. Journal of Investigative Dermatology, 2007, 127, 654-659.	0.7	165
137	Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. Journal of Clinical Investigation, 2007, 117, 1979-1987.	8.2	363
138	Different expression patterns of TRP genes in murine B and T lymphocytes. Biochemical and Biophysical Research Communications, 2006, 350, 762-767.	2.1	72
139	Lipophilicity of capsaicinoids and capsinoids influences the multiple activation process of rat TRPV1. Life Sciences, 2006, 79, 2303-2310.	4.3	48
140	Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCε-mediated phosphorylation at S800. Pain, 2006, 123, 106-116.	4.2	143
141	TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO Journal, 2006, 25, 1804-1815.	7.8	375
142	Chapter 6 Gating, Sensitization, and Desensitization of TRPV1. Current Topics in Membranes, 2006, , 181-197.	0.9	2
143	The Role of TRP Channels in Thermosensation. Frontiers in Neuroscience, 2006, , 271-286.	0.0	17
144	Structure and function of TRPV1. Pflugers Archiv European Journal of Physiology, 2005, 451, 143-150.	2.8	353

Μακοτο Τομιναςα

4

#	Article	IF	CITATIONS
145	TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. Journal of Clinical Investigation, 2005, 115, 2393-2401.	8.2	542
146	Molecular Mechanisms of Trigeminal Nociception and Sensation of Pungency. Chemical Senses, 2005, 30, i191-i192.	2.0	10
147	Sensitization of TRPV1 by EP1 and IP Reveals Peripheral Nociceptive Mechanism of Prostaglandins. Molecular Pain, 2005, 1, 1744-8069-1-3.	2.1	460
148	Proteinase-Activated Receptor 2-Mediated Potentiation of Transient Receptor Potential Vanilloid Subfamily 1 Activity Reveals a Mechanism for Proteinase-Induced Inflammatory Pain. Journal of Neuroscience, 2004, 24, 4293-4299.	3.6	283
149	DIP (mDia interacting protein) is a key molecule regulating Rho and Rac in a Src-dependent manner. EMBO Journal, 2004, 23, 760-771.	7.8	62
150	Activation of protein kinase C reverses capsaicin-induced calcium-dependent desensitization of TRPV1 ion channels. Cell Calcium, 2004, 35, 471-478.	2.4	119
151	Thermosensation and pain. Journal of Neurobiology, 2004, 61, 3-12.	3.6	440
152	Nociception and TRP Channels. CNS and Neurological Disorders, 2004, 3, 479-485.	4.3	112
153	Structural determinant of TRPV1 desensitization interacts with calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8002-8006.	7.1	305
154	Possible Involvement of P2Y ₂ Metabotropic Receptors in ATP-Induced Transient Receptor Potential Vanilloid Receptor 1-Mediated Thermal Hypersensitivity. Journal of Neuroscience, 2003, 23, 6058-6062.	3.6	217
155	Direct Phosphorylation of Capsaicin Receptor VR1 by Protein Kinase Cε and Identification of Two Target Serine Residues. Journal of Biological Chemistry, 2002, 277, 13375-13378.	3.4	411
156	Bradykinin Lowers the Threshold Temperature for Heat Activation of Vanilloid Receptor 1. Journal of Neurophysiology, 2002, 88, 544-548.	1.8	298
157	Heat-Evoked Activation of the Ion Channel, TRPV4. Journal of Neuroscience, 2002, 22, 6408-6414.	3.6	869
158	The Capsaicin Receptor. A Heat- and Proton-activated lon Channel Seibutsu Butsuri, 1999, 39, 159-164.	0.1	1
159	A capsaicin-receptor homologue with a high threshold for noxious heat. Nature, 1999, 398, 436-441.	27.8	1,414
160	The Cloned Capsaicin Receptor Integrates Multiple Pain-Producing Stimuli. Neuron, 1998, 21, 531-543.	8.1	2,792
161	The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 1997, 389, 816-824.	27.8	7,862

162 Redox-Sensitive TRP Channels: TRPA1 and TRPM2., 0, , .