Zhixiao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670161/publications.pdf Version: 2024-02-01

ΖΗΙΧΙΛΟ ΧΙΙ

#	Article	IF	CITATIONS
1	Efficient Zn Metal Anode Enabled by O,N-Codoped Carbon Microflowers. Nano Letters, 2022, 22, 1350-1357.	9.1	63
2	Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Materials, 2022, 46, 233-242.	18.0	53
3	An Ultrafast, Durable, and Highâ€Loading Polymer Anode for Aqueous Zincâ€Ion Batteries and Supercapacitors. Advanced Materials, 2022, 34, e2200077.	21.0	60
4	3D Hierarchical Carbon-Rich Micro-/Nanomaterials for Energy Storage and Catalysis. Electrochemical Energy Reviews, 2021, 4, 269-335.	25.5	108
5	N, O odoped Carbon Nanosheet Array Enabling Stable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2102354.	14.9	45
6	Enhanced polysulfide regulation <i>via</i> honeycomb-like carbon with catalytic MoC for lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 21760-21770.	10.3	15
7	Hollow waxberry-like cobalt–nickel oxide/S,N-codoped carbon nanospheres as a trifunctional electrocatalyst for OER, ORR, and HER. RSC Advances, 2020, 10, 27788-27793.	3.6	17
8	Bimetallic CoNi Alloy Nanoparticles Embedded in Pomegranate-like Nitrogen-Doped Carbon Spheres for Electrocatalytic Oxygen Reduction and Evolution. ACS Applied Nano Materials, 2020, 3, 1354-1362.	5.0	39
9	Molybdenum carbide nanoparticle decorated hierarchical tubular carbon superstructures with vertical nanosheet arrays for efficient hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18833-18838.	10.3	18
10	Perylene diimide-diamine/carbon black composites as high performance lithium/sodium ion battery cathodes. Journal of Materials Chemistry A, 2018, 6, 13613-13618.	10.3	29
11	Magnesium ion based organic secondary batteries. Journal of Materials Chemistry A, 2018, 6, 17297-17302.	10.3	66
12	Bottom-up fabrication of nitrogen-doped mesoporous carbon nanosheets as high performance oxygen reduction catalysts. Journal of Colloid and Interface Science, 2017, 492, 8-14.	9.4	10
13	A Lyotropic Liquidâ€Crystalâ€Based Assembly Avenue toward Highly Oriented Vanadium Pentoxide/Graphene Films for Flexible Energy Storage. Advanced Functional Materials, 2017, 27, 1606269.	14.9	21
14	Highly Crumpled Hybrids of Nitrogen/Sulfur Dual-Doped Graphene and Co ₉ S ₈ Nanoplates as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2017, 9, 12340-12347.	8.0	105
15	Energy Storage: A Lyotropic Liquidâ€Crystalâ€Based Assembly Avenue toward Highly Oriented Vanadium Pentoxide/Graphene Films for Flexible Energy Storage (Adv. Funct. Mater. 12/2017). Advanced Functional Materials, 2017, 27, .	14.9	5
16	Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry, 2016, 40, 6015-6021.	2.8	25
17	Nitrogenâ€Doped Porous Carbon Superstructures Derived from Hierarchical Assembly of Polyimide Nanosheets. Advanced Materials, 2016, 28, 1981-1987	21.0	390
18	A facile self-assembly strategy towards naphthalene diimide/graphene hybrids as high performance organic cathodes for lithium-ion batteries. RSC Advances, 2016, 6, 13666-13669.	3.6	17

#	Article	IF	CITATIONS
19	Graphene frameworks supported cobalt oxide with tunable morphologies for enhanced lithium storage behaviors. Journal of Materials Science, 2016, 51, 4856-4863.	3.7	4
20	Anion-induced self-assembly of positively charged polycyclic aromatic hydrocarbons towards nanostructures with controllable two-dimensional morphologies. CrystEngComm, 2016, 18, 877-880.	2.6	3