Csaba Szabo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670110/publications.pdf Version: 2024-02-01

		1792	2736
439	44,479	103	192
papers	citations	h-index	g-index
451	451	451	31731
all docs	docs citations	times ranked	citing authors

CSARA SZARO

#	Article	IF	CITATIONS
1	Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiological Reviews, 2023, 103, 31-276.	13.1	107
2	The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS Journal, 2022, 289, 2481-2515.	2.2	27
3	Overproduction of hydrogen sulfide, generated by cystathionine β-synthase, disrupts brain wave patterns and contributes to neurobehavioral dysfunction in a rat model of down syndrome. Redox Biology, 2022, 51, 102233.	3.9	31
4	Emerging roles of cystathionine β-synthase in various forms of cancer. Redox Biology, 2022, 53, 102331.	3.9	40
5	Effects of the PARP Inhibitor Olaparib on the Response of Human Peripheral Blood Leukocytes to Bacterial Challenge or Oxidative Stress. Biomolecules, 2022, 12, 788.	1.8	5
6	Inhibition of the 3-mercaptopyruvate sulfurtransferase—hydrogen sulfide system promotes cellular lipid accumulation. GeroScience, 2022, 44, 2271-2289.	2.1	6
7	Arginine vasopressin receptor 2 activation promotes microvascular permeability in sepsis. Pharmacological Research, 2021, 163, 105272.	3.1	6
8	The mitochondriaâ€ŧargeted hydrogen sulfide donor AP39 improves health and mitochondrial function in a C. elegans primary mitochondrial disease model. Journal of Inherited Metabolic Disease, 2021, 44, 367-375.	1.7	10
9	H2S as a Therapeutic Adjuvant Against COVID-19: Why and How?. Shock, 2021, 56, 865-867.	1.0	10
10	Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells, 2021, 10, 220.	1.8	57
11	ΔMST and the Regulation of Cardiac CSE and OTR Expression in Trauma and Hemorrhage. Antioxidants, 2021, 10, 233.	2.2	6
12	Hydrogen Sulfide, an Emerging Regulator of Acid-Sensing Ion Channels. Function, 2021, 2, zqab014.	1.1	1
13	Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants, 2021, 10, 361.	2.2	25
14	Meta-analysis of gene expression patterns in Down syndrome highlights significant alterations in mitochondrial and bioenergetic pathways. Mitochondrion, 2021, 57, 163-172.	1.6	6
15	Host cystathionine-γ lyase derived hydrogen sulfide protects against Pseudomonas aeruginosa sepsis. PLoS Pathogens, 2021, 17, e1009473.	2.1	12
16	Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacological Research, 2021, 165, 105393.	3.1	36
17	Novel Aryl-Substituted Pyrimidones as Inhibitors of 3-Mercaptopyruvate Sulfurtransferase with Antiproliferative Efficacy in Colon Cancer. Journal of Medicinal Chemistry, 2021, 64, 6221-6240.	2.9	14
18	Physiological concentrations of cyanide stimulate mitochondrial Complex IV and enhance cellular bioenergetics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26

#	Article	IF	CITATIONS
19	Repurposing of Clinically Approved Poly-(Adp-Ribose) Polymerase Inhibitors For The Therapy of Sepsis. Shock, 2021, Publish Ahead of Print, 901-909.	1.0	5
20	Efficacy of Novel Aminooxyacetic Acid Prodrugs in Colon Cancer Models: Towards Clinical Translation of the Cystathionine β-Synthase Inhibition Concept. Biomolecules, 2021, 11, 1073.	1.8	14
21	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	2.7	148
22	Effects of cold or warm ischemia and ex-vivo lung perfusion on the release of damage associated molecular patterns and inflammatory cytokines in experimental lung transplantation. Journal of Heart and Lung Transplantation, 2021, 40, 905-916.	0.3	15
23	Reply to Giamogante et al.: The effect of low cyanide on O2 consumption is best observed in physiological, rather than reductionist, systems. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2113369118.	3.3	0
24	To the Editor:. Shock, 2021, 55, 138-139.	1.0	4
25	Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)—hydrogen sulfide (H2S) pathway in cancer cells. Pharmacological Research, 2020, 154, 104083.	3.1	65
26	3â€Mercaptopyruvate sulfurtransferase supports endothelial cell angiogenesis and bioenergetics. British Journal of Pharmacology, 2020, 177, 866-883.	2.7	39
27	The Antioxidative Role of Cytoglobin in Podocytes: Implications for a Role in Chronic Kidney Disease. Antioxidants and Redox Signaling, 2020, 32, 1155-1171.	2.5	23
28	Effects of the Poly(ADP-Ribose) Polymerase Inhibitor Olaparib in Cerulein-Induced Pancreatitis. Shock, 2020, 53, 653-665.	1.0	11
29	Mechanism of cystathionine-l²-synthase inhibition by disulfiram: The role of bis(N,N-diethyldithiocarbamate)-copper(II). Biochemical Pharmacology, 2020, 182, 114267.	2.0	23
30	Poly(ADP-Ribose) Polymerase Inhibition in Acute Lung Injury. A Reemerging Concept. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 571-590.	1.4	17
31	Meta-analysis of metabolites involved in bioenergetic pathways reveals a pseudohypoxic state in Down syndrome. Molecular Medicine, 2020, 26, 102.	1.9	21
32	Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacological Research, 2020, 161, 105119.	3.1	134
33	Poly(ADP-ribose) polymerase inhibition: past, present and future. Nature Reviews Drug Discovery, 2020, 19, 711-736.	21.5	275
34	Screening of Heteroaromatic Scaffolds against Cystathionine Beta-Synthase Enables Identification of Substituted Pyrazolo[3,4-c]Pyridines as Potent and Selective Orthosteric Inhibitors. Molecules, 2020, 25, 3739.	1.7	2
35	Role of Hydrogen Sulfide and 3-Mercaptopyruvate Sulfurtransferase in the Regulation of the Endoplasmic Reticulum Stress Response in Hepatocytes. Biomolecules, 2020, 10, 1692.	1.8	12
36	Cystathionine-β-synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules, 2020, 10, 697.	1.8	113

#	Article	IF	CITATIONS
37	Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease. Critical Care, 2020, 24, 318.	2.5	31
38	Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation, Migration, and Bioenergetics in Murine Colon Cancer Cells. Biomolecules, 2020, 10, 447.	1.8	42
39	Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers, 2020, 12, 532.	1.7	49
40	The reâ€emerging pathophysiological role of the cystathionineâ€Î²â€synthase ―hydrogen sulfide system in Down syndrome. FEBS Journal, 2020, 287, 3150-3160.	2.2	36
41	Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation and Cellular Bioenergetics in Human Down Syndrome Fibroblasts. Biomolecules, 2020, 10, 653.	1.8	24
42	Cystathionine Î ³ Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis. Circulation, 2019, 139, 101-114.	1.6	103
43	Cystathionine-Î ³ -lyase (CSE) deficiency increases erythropoiesis and promotes mitochondrial electron transport via the upregulation of coproporphyrinogen III oxidase and consequent stimulation of heme biosynthesis. Biochemical Pharmacology, 2019, 169, 113604.	2.0	14
44	Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience, 2019, 41, 419-439.	2.1	75
45	Overproduction of H ₂ S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18769-18771.	3.3	102
46	The PARP inhibitor olaparib exerts beneficial effects in mice subjected to cecal ligature and puncture and in cells subjected to oxidative stress without impairing DNA integrity: A potential opportunity for repurposing a clinically used oncological drug for the experimental therapy of sepsis. Pharmacological Research, 2019, 145, 104263.	3.1	21
47	Effect of 3-mercaptopyruvate Sulfurtransferase Deficiency on the Development of Multiorgan Failure, Inflammation, and Wound Healing in Mice Subjected to Burn Injury. Journal of Burn Care and Research, 2019, 40, 148-156.	0.2	11
48	Oxandrolone protects against the development of multiorgan failure, modulates the systemic inflammatory response and promotes wound healing during burn injury. Burns, 2019, 45, 671-681.	1.1	22
49	H ₂ S, a Bacterial Defense Mechanism against the Host Immune Response. Infection and Immunity, 2019, 87, .	1.0	62
50	PARP inhibition induces Akt-mediated cytoprotective effects through the formation of a mitochondria-targeted phospho-ATM-NEMO-Akt-mTOR signalosome. Biochemical Pharmacology, 2019, 162, 98-108.	2.0	33
51	The Effects of Genetic 3-Mercaptopyruvate Sulfurtransferase Deficiency in Murine Traumatic-Hemorrhagic Shock. Shock, 2019, 51, 472-478.	1.0	18
52	Inventing new therapies without reinventing the wheel: the power of drug repurposing. British Journal of Pharmacology, 2018, 175, 165-167.	2.7	55
53	Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Scientific Reports, 2018, 8, 914.	1.6	100
54	Development of a stretchâ€induced neurotrauma model for mediumâ€ŧhroughput screening <i>in vitro</i> : identification of rifampicin as a neuroprotectant. British Journal of Pharmacology, 2018, 175, 284-300.	2.7	18

#	Article	IF	CITATIONS
55	The clinically used PARP inhibitor olaparib improves organ function, suppresses inflammatory responses and accelerates wound healing in a murine model of thirdâ€degree burn injury. British Journal of Pharmacology, 2018, 175, 232-245.	2.7	27
56	Opportunities for the repurposing of PARP inhibitors for the therapy of nonâ€oncological diseases. British Journal of Pharmacology, 2018, 175, 192-222.	2.7	160
57	Drug resistance induces the upregulation of H2S-producing enzymes in HCT116 colon cancer cells. Biochemical Pharmacology, 2018, 149, 174-185.	2.0	67
58	Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochemical Pharmacology, 2018, 149, 186-204.	2.0	95
59	A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochemical Pharmacology, 2018, 149, 5-19.	2.0	185
60	Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. Journal of Immunology, 2018, 200, 643-656.	0.4	26
61	Olaparib protects cardiomyocytes against oxidative stress and improves graft contractility during the early phase after heart transplantation in rats. British Journal of Pharmacology, 2018, 175, 246-261.	2.7	25
62	Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Medicine Experimental, 2018, 6, 43.	0.9	15
63	Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriosclerosis. Intensive Care Medicine Experimental, 2018, 6, 44.	0.9	5
64	Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Medicine Experimental, 2018, 6, 41.	0.9	20
65	Oxidative-Nitrative Stress and Poly (ADP-Ribose) Polymerase Activation 3 Years after Pregnancy. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	1.9	4
66	Reduced adipose tissue H 2 S in obesity. Pharmacological Research, 2018, 128, 190-199.	3.1	27
67	Alterations in nitric oxide homeostasis during traumatic brain injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2627-2632.	1.8	42
68	Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. American Journal of Physiology - Cell Physiology, 2017, 312, C3-C15.	2.1	145
69	H 2 S-induced S -sulfhydration of lactate dehydrogenase a (LDHA) stimulates cellular bioenergetics in HCT116 colon cancer cells. Biochemical Pharmacology, 2017, 136, 86-98.	2.0	70
70	Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H ₂ S Donors. ACS Chemical Biology, 2017, 12, 2117-2123.	1.6	68
71	Impact of hyperglycemia on cystathionine-γ-lyase expression during resuscitated murine septic shock. Intensive Care Medicine Experimental, 2017, 5, 30.	0.9	10
72	Cardiovascular disease and resuscitated septic shock lead to the downregulation of the H2S-producing enzyme cystathionine-γ-lyase in the porcine coronary artery. Intensive Care Medicine Experimental, 2017, 5, 17.	0.9	28

#	Article	IF	CITATIONS
73	Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn. Burns, 2017, 43, 1021-1033.	1.1	22
74	Vascular biology of hydrogen sulfide. American Journal of Physiology - Cell Physiology, 2017, 312, C537-C549.	2.1	156
75	International Union of Basic and Clinical Pharmacology. Cll: Pharmacological Modulation of H ₂ S Levels: H ₂ S Donors and H ₂ S Biosynthesis Inhibitors. Pharmacological Reviews, 2017, 69, 497-564.	7.1	304
76	Hydrogen Sulfide Preserves Endothelial Nitric Oxide Synthase Function by Inhibiting Proline-Rich Kinase 2: Implications for Cardiomyocyte Survival and Cardioprotection. Molecular Pharmacology, 2017, 92, 718-730.	1.0	32
77	Upregulation of Cystathionine-β-Synthase in Colonic Epithelia Reprograms Metabolism and Promotes Carcinogenesis. Cancer Research, 2017, 77, 5741-5754.	0.4	102
78	Prolonging hypothermic ischaemic cardiac and vascular storage by inhibiting the activation of the nuclear enzyme poly(adenosine diphosphate-ribose) polymerase. European Journal of Cardio-thoracic Surgery, 2017, 51, 829-835.	0.6	6
79	Potential Pharmacological Chaperones for Cystathionine Beta-Synthase-Deficient Homocystinuria. Handbook of Experimental Pharmacology, 2017, 245, 345-383.	0.9	28
80	Quantification of PARP Activity in Human Tissues: Ex Vivo Assays in Blood Cells and Immunohistochemistry in Human Biopsies. Methods in Molecular Biology, 2017, 1608, 19-26.	0.4	2
81	AQXâ€1125, small molecule SHIP1 activator inhibits bleomycinâ€induced pulmonary fibrosis. British Journal of Pharmacology, 2017, 174, 3045-3057.	2.7	15
82	Cooperative Interactions Between NO and H 2 S: Chemistry, Biology, Physiology, Pathophysiology. , 2017, , 57-83.		8
83	Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. Cardiovascular Research, 2017, 113, 926-937.	1.8	25
84	Consensus Molecular Subtypes of Colorectal Cancer and their Clinical Implications. International Biological and Biomedical Journal, 2017, 3, 105-111.	7.0	54
85	Hydrogen Sulfide Contributes to Retinal Neovascularization in Ischemia-Induced Retinopathy. , 2016, 57, 3002.		17
86	Sepsis induces Telomere Shortening: a Potential Mechanism Responsible for Delayed Pathophysiological Events in Sepsis Survivors?. Molecular Medicine, 2016, 22, 886-891.	1.9	17
87	Cystathionine-β-Synthase Inhibition for Colon Cancer: Enhancement of the Efficacy of Aminooxyacetic Acid via the Prodrug Approach. Molecular Medicine, 2016, 22, 361-379.	1.9	59
88	Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells. PLoS ONE, 2016, 11, e0154813.	1.1	34
89	Intraluminal Flagellin Differentially Contributes to Gut Dysbiosis and Systemic Inflammation following Burn Injury. PLoS ONE, 2016, 11, e0166770.	1.1	15
90	AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo. Shock, 2016, 45, 88-97.	1.0	89

#	Article	IF	CITATIONS
91	Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacological Research, 2016, 111, 556-562.	3.1	79
92	Delayed Treatment with Sodium Hydrosulfide Improves Regional Blood Flow and Alleviates Cecal Ligation and Puncture (CLP)-Induced Septic Shock. Shock, 2016, 46, 183-193.	1.0	35
93	H2S and cancer: Give credit where credit is due. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 334.	0.8	3
94	Both the H 2 S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H 2 S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacological Research, 2016, 113, 348-355.	3.1	31
95	Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacological Research, 2016, 113, 175-185.	3.1	91
96	S- Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacological Research, 2016, 113, 116-124.	3.1	156
97	Screening of a composite library of clinically used drugs and well-characterized pharmacological compounds for cystathionine Î ² -synthase inhibition identifies benserazide as a drug potentially suitable for repurposing for the experimental therapy of colon cancer. Pharmacological Research, 2016, 113, 18-37.	3.1	62
98	Effect of endotoxemia in mice genetically deficient in cystathionine-Î ³ -lyase, cystathionine-Î ² -synthase or 3-mercaptopyruvate sulfurtransferase. International Journal of Molecular Medicine, 2016, 38, 1683-1692.	1.8	37
99	Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Scientific Reports, 2016, 6, 36125.	1.6	89
100	Hydrogen Sulfide Is an Antiviral and Antiinflammatory Endogenous Gasotransmitter in the Airways. Role in Respiratory Syncytial Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 684-696.	1.4	69
101	Hydrogen sulfide modulates chromatin remodeling and inflammatory mediator production in response to endotoxin, but does not play a role in the development of endotoxin tolerance. Journal of Inflammation, 2016, 13, 10.	1.5	13
102	Cardioprotection by H2S Donors: Nitric Oxide-Dependent and -Independent Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 431-440.	1.3	72
103	Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nature Reviews Drug Discovery, 2016, 15, 185-203.	21.5	484
104	Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. Free Radical Biology and Medicine, 2016, 100, 257-270.	1.3	62
105	Differential acute and chronic effects of burn trauma on murine skeletal muscle bioenergetics. Burns, 2016, 42, 112-122.	1.1	17
106	Salvage of nicotinamide adenine dinucleotide plays a critical role in the bioenergetic recovery of postâ€hypoxic cardiomyocytes. British Journal of Pharmacology, 2015, 172, 4817-4832.	2.7	14
107	Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by dl-α-Lipoic Acid. Molecular Medicine, 2015, 21, 1-14.	1.9	121
108	Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury. PLoS ONE, 2015, 10, e0143730.	1.1	65

#	Article	IF	CITATIONS
109	Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS ONE, 2015, 10, e0134227.	1.1	42
110	The HIV Protease Inhibitor Saquinavir Inhibits HMGBI-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88. Molecular Medicine, 2015, 21, 749-757.	1.9	17
111	Upregulation and Mitochondrial Sequestration of Hemoglobin Occur in Circulating Leukocytes during Critical Illness, Conferring a Cytoprotective Phenotype. Molecular Medicine, 2015, 21, 666-675.	1.9	24
112	Editorial: Old dog, new tricks: proangiogenic effect of adenosine via stimulation of thrombospondin-1 in macrophages. Journal of Leukocyte Biology, 2015, 97, 3-5.	1.5	0
113	Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. International Journal of Molecular Medicine, 2015, 35, 1741-1746.	1.8	55
114	MD-2 is required for disulfide HMGB1–dependent TLR4 signaling. Journal of Experimental Medicine, 2015, 212, 5-14.	4.2	295
115	Role of Hydrogen Sulfide in Paramyxovirus Infections. Journal of Virology, 2015, 89, 5557-5568.	1.5	67
116	Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. Cardiovascular Research, 2015, 106, 432-442.	1.8	72
117	Hydrogen Sulfide and Cancer. Handbook of Experimental Pharmacology, 2015, 230, 233-241.	0.9	174
118	Biofilm Lysine Decarboxylase, a New Therapeutic Target for Periodontal Inflammation. Journal of Periodontology, 2015, 86, 1176-1184.	1.7	15
119	The role of H2S bioavailability in endothelial dysfunction. Trends in Pharmacological Sciences, 2015, 36, 568-578.	4.0	131
120	Hydrogen sulfide and PKG in ischemia–reperfusion injury: sources, signaling, accelerators and brakes. Basic Research in Cardiology, 2015, 110, 510.	2.5	20
121	The Therapeutic Potential of Cystathionine β-Synthetase/Hydrogen Sulfide Inhibition in Cancer. Antioxidants and Redox Signaling, 2015, 22, 424-448.	2.5	198
122	Proâ€ŧumorigenic Effects of Hydrogen Sulfide (H2S) on Normal Colonic Fibroblasts (NCF) and Colorectal (CRC) Cancerâ€Associated Fibroblasts (CAF). FASEB Journal, 2015, 29, 725.26.	0.2	0
123	Modulation of Poly(ADP-Ribose) Polymerase-1 (PARP-1)-Mediated Oxidative Cell Injury by Ring Finger Protein 146 (RNF146) in Cardiac Myocytes. Molecular Medicine, 2014, 20, 313-328.	1.9	29
124	Endothelial dysfunction is a potential contributor to multiple organ failure and mortality in aged mice subjected to septic shock: preclinical studies in a murine model of cecal ligation and puncture. Critical Care, 2014, 18, 511.	2.5	74
125	Regulation of Mitochondrial Poly(ADP-Ribose) Polymerase Activation by the <i>β</i> -Adrenoceptor/cAMP/Protein Kinase A Axis during Oxidative Stress. Molecular Pharmacology, 2014, 86, 450-462.	1.0	37
126	Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Research, 2014, 42, 13161-13173.	6.5	77

#	Article	IF	CITATIONS
127	Effect of S-adenosyl-l-methionine (SAM), an allosteric activator of cystathionine-β-synthase (CBS) on colorectal cancer cell proliferation and bioenergetics in vitro. Nitric Oxide - Biology and Chemistry, 2014, 41, 146-156.	1.2	94
128	Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part <scp>II</scp> . Pathophysiological and therapeutic aspects. British Journal of Pharmacology, 2014, 171, 2123-2146.	2.7	121
129	AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide - Biology and Chemistry, 2014, 41, 120-130.	1.2	225
130	Poly (ADP-ribose) polymerase-1 is a key mediator of liver inflammation and fibrosis. Hepatology, 2014, 59, 1998-2009.	3.6	103
131	Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part <scp>I</scp> . Biochemical and physiological mechanisms. British Journal of Pharmacology, 2014, 171, 2099-2122.	2.7	346
132	The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MedChemComm, 2014, 5, 728-736.	3.5	104
133	Epalrestat induces cell proliferation and migration in endothelial cells via mTOR activation through PI3/Akt signaling. Diabetology International, 2014, 5, 105-111.	0.7	1
134	H2S during circulatory shock: Some unresolved questions. Nitric Oxide - Biology and Chemistry, 2014, 41, 48-61.	1.2	56
135	Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochemical and Biophysical Research Communications, 2013, 433, 401-407.	1.0	70
136	Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12474-12479.	3.3	601
137	Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochemical Pharmacology, 2013, 86, 1311-1319.	2.0	82
138	Aging Exacerbates Microvascular Endothelial Damage Induced by Circulating Factors Present in the Serum of Septic Patients. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 652-660.	1.7	31
139	Cell-Based Screening Identifies Paroxetine as an Inhibitor of Diabetic Endothelial Dysfunction. Diabetes, 2013, 62, 953-964.	0.3	43
140	Characterization of <scp>AQX</scp> â€1125, a smallâ€molecule <scp>SHIP1</scp> activator. British Journal of Pharmacology, 2013, 168, 1506-1518.	2.7	55
141	Intramitochondrial hydrogen sulfide production by 3â€mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB Journal, 2013, 27, 601-611.	0.2	252
142	Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (<scp>CBS</scp>) and cystathionine γ lyase (<scp>CSE</scp>). British Journal of Pharmacology, 2013, 169, 922-932.	2.7	340
143	Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond. Molecular Aspects of Medicine, 2013, 34, 1217-1256.	2.7	312
144	Potential Role of Hydrogen Sulfide in the Pathogenesis of Vascular Dysfunction in Septic Shock. Current Vascular Pharmacology, 2013, 11, 208-221.	0.8	1

#	Article	IF	CITATIONS
145	Characterization of <scp>AQX</scp> â€1125, a smallâ€molecule <scp>SHIP1</scp> activator. British Journal of Pharmacology, 2013, 168, 1519-1529.	2.7	45
146	Endogenously produced hydrogen sulfide supports tumor cell growth and proliferation. Cell Cycle, 2013, 12, 2915-2916.	1.3	51
147	Adenosine and inosine exert cytoprotective effects in an in vitro model of liver ischemia-reperfusion injury. International Journal of Molecular Medicine, 2013, 31, 437-446.	1.8	25
148	Role of poly(ADP-ribosyl)ation in a â€~two-hit' model of hypoxia and oxidative stress in human A549 epithelial cells in vitro. International Journal of Molecular Medicine, 2013, 32, 339-346.	1.8	12
149	Identification of Pharmacological Modulators of HMGB1-Induced Inflammatory Response by Cell-Based Screening. PLoS ONE, 2013, 8, e65994.	1.1	31
150	Deficiency in Repair of the Mitochondrial Genome Sensitizes Proliferating Myoblasts to Oxidative Damage. PLoS ONE, 2013, 8, e75201.	1.1	32
151	Potential role of hydrogen sulfide in the pathogenesis of vascular dysfunction in septic shock. Current Vascular Pharmacology, 2013, 11, 208-21.	0.8	27
152	Effects of FP15, a peroxynitrite decomposition catalyst on cardiac and pulmonary function after cardiopulmonary bypass. European Journal of Cardio-thoracic Surgery, 2012, 41, 391-396.	0.6	12
153	The Outsiders: Emerging Roles of Ectonucleotidases in Inflammation. Science Translational Medicine, 2012, 4, 146ps14.	5.8	10
154	Temperature and Cell-Type Dependency of Sulfide Effects on Mitochondrial Respiration. Shock, 2012, 38, 367-374.	1.0	26
155	Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock*. Critical Care Medicine, 2012, 40, 2157-2167.	0.4	44
156	Combined Recombinant Human Activated Protein C and Ceftazidime Prevent the Onset of Acute Respiratory Distress Syndrome in Severe Sepsis. Shock, 2012, 37, 170-176.	1.0	5
157	Time Profile of Oxidative Stress and Neutrophil Activation in Ovine Acute Lung Injury and Sepsis. Shock, 2012, 37, 468-472.	1.0	33
158	Identification of agents that reduce renal hypoxia–reoxygenation injury using cell-based screening: Purine nucleosides are alternative energy sources in LLC-PK1 cells during hypoxia. Archives of Biochemistry and Biophysics, 2012, 517, 53-70.	1.4	22
159	Roles of Hydrogen Sulfide in the Pathogenesis of Diabetes Mellitus and Its Complications. Antioxidants and Redox Signaling, 2012, 17, 68-80.	2.5	182
160	Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9161-9166.	3.3	572
161	Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress. Biochemical Pharmacology, 2012, 83, 633-643.	2.0	80
162	Thioglycine and l-thiovaline: Biologically active H2S-donors. Bioorganic and Medicinal Chemistry, 2012, 20, 2675-2678.	1.4	61

#	Article	IF	CITATIONS
163	Gammaâ€ŧocopherol nebulization attenuates acute lung injury with burn and smoke inhalation in the ovine model. FASEB Journal, 2012, 26, 1137.12.	0.2	0
164	Aging exacerbates microvascular endothelial damage induced by inflammatory factors present in the circulation during sepsis. FASEB Journal, 2012, 26, 1058.11.	0.2	0
165	The peroxynitrite catalyst WW-85 improves microcirculation in ovine smoke inhalation injury and septic shock. Burns, 2011, 37, 842-850.	1.1	12
166	Cardioprotective effects of hydrogen sulfide. Nitric Oxide - Biology and Chemistry, 2011, 25, 201-210.	1.2	115
167	Cytoprotective effect of γ-tocopherol against tumor necrosis factor α induced cell dysfunction in L929 cells. International Journal of Molecular Medicine, 2011, 28, 711-20.	1.8	5
168	Effects of Intravenous Sulfide During Porcine Aortic Occlusion-Induced Kidney Ischemia/Reperfusion Injury. Shock, 2011, 35, 156-163.	1.0	54
169	The Peroxynitrite Catalyst WW-85 Improves Pulmonary Function in Ovine Septic Shock. Shock, 2011, 35, 148-155.	1.0	20
170	Regulation of Kinase Cascade Activation and Heat Shock Protein Expression by Poly(ADP-ribose) Polymerase Inhibition in Doxorubicin-induced Heart Failure. Journal of Cardiovascular Pharmacology, 2011, 58, 380-391.	0.8	23
171	The Angiotensin-Converting Enzyme Inhibitor Captopril Inhibits Poly(Adp-Ribose) Polymerase Activation and Exerts Beneficial Effects in an Ovine Model of Burn and Smoke Injury. Shock, 2011, 36, 402-409.	1.0	12
172	Burn and Smoke Injury Activates Poly(ADP-ribose)polymerase in Circulating Leukocytes. Shock, 2011, 36, 144-148.	1.0	10
173	Hydrogen sulphide and angiogenesis: mechanisms and applications. British Journal of Pharmacology, 2011, 164, 853-865.	2.7	186
174	Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13829-13834.	3.3	254
175	Inhibition of Nitric Oxide–Stimulated Vasorelaxation by Carbon Monoxide-Releasing Molecules. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2570-2576.	1.1	43
176	Increased Poly(ADP-Ribosyl)ation in Skeletal Muscle Tissue of Pediatric Patients with Severe Burn Injury. Shock, 2011, 36, 18-23.	1.0	23
177	Effects of a Potent Peroxynitrite Decomposition Catalyst in Murine Models of Endotoxemia and Sepsis. Shock, 2011, 35, 560-566.	1.0	38
178	Beneficial pulmonary effects of a metalloporphyrinic peroxynitrite decomposition catalyst in burn and smoke inhalation injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L167-L175.	1.3	21
179	Human internal thoracic artery grafts exhibit severe morphological and functional damage and spasmic vasomotion due to oxidative stress. Medical Science Monitor, 2011, 17, CR411-CR416.	0.5	1
180	Cardiac and metabolic effects of hypothermia and inhaled hydrogen sulfide in anesthetized and ventilated mice*. Critical Care Medicine, 2010, 38, 588-595.	0.4	597

#	Article	IF	CITATIONS
181	THERAPEUTIC INJECTION OF PARP INHIBITOR INO-1001 PRESERVES CARDIAC FUNCTION IN PORCINE MYOCARDIAL ISCHEMIA AND REPERFUSION WITHOUT REDUCING INFARCT SIZE. Shock, 2010, 33, 507-512.	1.0	25
182	PATHOPHYSIOLOGICAL ROLES OF PEROXYNITRITE IN CIRCULATORY SHOCK. Shock, 2010, 34, 4-14.	1.0	113
183	A cell-microelectronic sensing technique for the screening of cytoprotective compounds. International Journal of Molecular Medicine, 2010, 25, 525-30.	1.8	33
184	Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology, 2010, 276, 85-94.	2.0	172
185	A monobromobimaneâ€based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. British Journal of Pharmacology, 2010, 160, 941-957.	2.7	201
186	Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. British Journal of Clinical Pharmacology, 2010, 69, 626-636.	1.1	104
187	Gaseotransmitters: New Frontiers for Translational Science. Science Translational Medicine, 2010, 2, 59ps54.	5.8	114
188	Effect of hydrogen sulfide on myocardial protection in the setting of cardioplegia and cardiopulmonary bypassâ~†. Interactive Cardiovascular and Thoracic Surgery, 2010, 10, 506-512.	0.5	46
189	Influence of PARP-1 Polymorphisms in Patients after Traumatic Brain Injury. Journal of Neurotrauma, 2010, 27, 465-471.	1.7	37
190	Pathomechanisms of Myocardial Dysfunction in Sepsis. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 274-284.	0.6	24
191	Molecular biological effects of selective neuronal nitric oxide synthase inhibition in ovine lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L427-L436.	1.3	21
192	Gene expression reprogramming protects macrophage from septic-induced cell death. Molecular Immunology, 2010, 47, 2587-2593.	1.0	21
193	Endotoxin tolerance: Selective alterations in gene expression and protection against lymphocyte death. Immunobiology, 2010, 215, 435-442.	0.8	15
194	Dual role of poly(ADPâ€ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB Journal, 2009, 23, 3553-3563.	0.2	92
195	Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21972-21977.	3.3	768
196	Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 977-984.	0.4	135
197	Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. Journal of Cellular and Molecular Medicine, 2009, 13, 2330-2341.	1.6	75
198	Poly(ADP-ribose) polymerase-1 (PARP-1) transcriptionally regulates angiotensin AT2 receptor (AT2R) and AT2R binding protein (ATBP) genes. Biochemical Pharmacology, 2009, 77, 1795-1805.	2.0	29

#	Article	IF	CITATIONS
199	Rapid â€~glycaemic swings' induce nitrosative stress, activate poly(ADP-ribose) polymerase and impair endothelial function in a rat model of diabetes mellitus. Diabetologia, 2009, 52, 952-961.	2.9	110
200	Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. British Journal of Pharmacology, 2009, 156, 713-727.	2.7	151
201	Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide. British Journal of Pharmacology, 2009, 157, 944-951.	2.7	70
202	Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn―and smokeâ€induced acute lung injury. British Journal of Pharmacology, 2009, 158, 1442-1453.	2.7	46
203	Cytoprotective effects of adenosine and inosine in an <i>in vitro</i> model of acute tubular necrosis. British Journal of Pharmacology, 2009, 158, 1565-1578.	2.7	40
204	Bench-to-bedside review: Hydrogen sulfide – the third gaseous transmitter: applications for critical care. Critical Care, 2009, 13, 213.	2.5	137
205	Intra-mitochondrial poly(ADP-ribosyl)ation: Potential role for alpha-ketoglutarate dehydrogenase. Mitochondrion, 2009, 9, 159-164.	1.6	39
206	Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1466-H1483.	1.5	314
207	Effect of Hydrogen Sulfide in a Porcine Model of Myocardial Ischemia-Reperfusion: Comparison of Different Administration Regimens and Characterization of the Cellular Mechanisms of Protection. Journal of Cardiovascular Pharmacology, 2009, 54, 287-297.	0.8	101
208	THE NOVEL INOSINE ANALOGUE INO-2002 EXERTS AN ANTI-INFLAMMATORY EFFECT IN A MURINE MODEL OF ACUTE LUNG INJURY. Shock, 2009, 32, 258-262.	1.0	11
209	Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. , 2009, 23, 3553.		1
210	Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. FASEB Journal, 2009, 23, 990.24.	0.2	0
211	Quantification of Poly(ADP-Ribose)-Modified Proteins in Cerebrospinal Fluid from Infants and Children after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1523-1529.	2.4	23
212	Identification of polyâ€ADPâ€ribosylated mitochondrial proteins after traumatic brain injury. Journal of Neurochemistry, 2008, 104, 1700-1711.	2.1	100
213	Poly (ADP) ribose synthetase inhibition in alveolar macrophages undergoing hypoxia and reoxygenation. Experimental and Molecular Pathology, 2008, 84, 141-144.	0.9	10
214	Protein kinase C protects from DNA damageâ€induced necrotic cell death by inhibiting poly(ADPâ€ribose) polymeraseâ€1. FEBS Letters, 2008, 582, 1672-1678.	1.3	23
215	γ-Tocopherol nebulization by a lipid aerosolization device improves pulmonary function in sheep with burn and smoke inhalation injury. Free Radical Biology and Medicine, 2008, 45, 425-433.	1.3	49
216	Reduction of hemorrhagic transformation by PJ34, a poly(ADP-ribose)polymerase inhibitor, after permanent focal cerebral ischemia in mice. European Journal of Pharmacology, 2008, 588, 52-57.	1.7	43

#	Article	IF	CITATIONS
217	Treatment with insulin inhibits poly(ADP-ribose)polymerase activation in a rat model of endotoxemia. Life Sciences, 2008, 82, 205-209.	2.0	28
218	Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sciences, 2008, 83, 589-594.	2.0	97
219	Lung-protective effects of the metalloporphyrinic peroxynitrite decomposition catalyst WW-85 in interleukin-2 induced toxicity. Biochemical and Biophysical Research Communications, 2008, 377, 786-791.	1.0	23
220	Improvement of Aging-Associated Cardiovascular Dysfunction by the Orally Administered Copper(II)-Aspirinate Complex. Rejuvenation Research, 2008, 11, 945-956.	0.9	18
221	Role of the Peroxynitrite-Poly(ADP-Ribose) Polymerase Pathway in Human Disease. American Journal of Pathology, 2008, 173, 2-13.	1.9	348
222	Inflammatory disease and sunlight: the vitamin D–poly (ADP-ribose) polymerase connection. Future Rheumatology, 2008, 3, 169-181.	0.2	18
223	The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia–reperfusion injuryâ~†â~†â`†. European Journal of Cardio-thoracic Surgery, 2008, 33, 906-913.	0.6	155
224	The novel inosine analogue, INO-2002, protects against diabetes development in multiple low-dose streptozotocin and non-obese diabetic mouse models of type I diabetes. Journal of Endocrinology, 2008, 198, 581-589.	1.2	10
225	Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clinical Science, 2008, 115, 91-97.	1.8	108
226	HEMODYNAMIC AND METABOLIC EFFECTS OF HYDROGEN SULFIDE DURING PORCINE ISCHEMIA/REPERFUSION INJURY. Shock, 2008, 30, 359-364.	1.0	95
227	Poly(ADP-ribose) polymerase: a new therapeutic target?. Current Opinion in Anaesthesiology, 2008, 21, 111-121.	0.9	38
228	Neuronal nitric oxide synthase inhibition attenuates cardiopulmonary dysfunctions after combined burn and smoke inhalation injury in sheep. Critical Care Medicine, 2008, 36, 1196-1204.	0.4	77
229	Use of monoâ€bromoâ€bimane to derivatize sulfide in whole blood: comparison of blood sulfide levels during atmospheric hydrogen sulfide exposure and intravenous sulfide infusion. FASEB Journal, 2008, 22, 749.15.	0.2	6
230	Inhibition of Poly (ADPâ€ribose) Polymerase (PARP) by PJâ€34 regulates angiogenesis and VEGFâ€induced MAPKâ€signalling. FASEB Journal, 2008, 22, 746.10.	0.2	0
231	Interplay of superoxide, nitric oxide and peroxynitrite in doxorubicinâ€induced cell death. FASEB Journal, 2008, 22, 970.12.	0.2	3
232	Inhibition of angiogenesis by the poly(ADP-ribose) polymerase inhibitor PJ-34. International Journal of Molecular Medicine, 2008, 22, 113-8.	1.8	45
233	Poly(ADP-Ribose) Polymerase Inhibition Improves Endothelial Dysfunction Induced by Hypochlorite. Experimental Biology and Medicine, 2007, 232, 1204-1212.	1.1	24
234	Local Administration of the Poly(ADP-Ribose) Polymerase Inhibitor INO-1001 Prevents NAD ⁺ Depletion and Improves Water Maze Performance after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2007, 24, 1399-1405.	1.7	52

#	Article	IF	CITATIONS
235	Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D. International Journal of Molecular Medicine, 2007, 19, 947.	1.8	10
236	Oxidant-induced cardiomyocyte injury: Identification of the cytoprotective effect of a dopamine 1 receptor agonist using a cell-based high-throughput assay. International Journal of Molecular Medicine, 2007, 20, 749.	1.8	7
237	Primary role of superoxide anion generation in the cascade of events leading to endothelial dysfunction and damage in high glucose treated HUVEC. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 257-267.	1.1	26
238	Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15560-15565.	3.3	996
239	Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 2007, 6, 662-680.	21.5	1,732
240	Hydrogen sulphide and its therapeutic potential. Nature Reviews Drug Discovery, 2007, 6, 917-935.	21.5	1,614
241	Contribution of Poly(ADP-Ribose) Polymerase to Postischemic Blood—Brain Barrier Damage in Rats. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1318-1326.	2.4	65
242	Role of Poly(ADPâ€ribose) polymerase 1 (PARPâ€1) in Cardiovascular Diseases: The Therapeutic Potential of PARP Inhibitors. Cardiovascular Drug Reviews, 2007, 25, 235-260.	4.4	282
243	Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. European Journal of Pharmacology, 2007, 564, 158-166.	1.7	41
244	Single dose treatment with PARP-inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Experimental Gerontology, 2007, 42, 676-685.	1.2	49
245	The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction. Mechanisms of Ageing and Development, 2007, 128, 173-181.	2.2	54
246	The selective poly(ADP)ribose-polymerase 1 inhibitor INO1001 reduces spinal cord injury during porcine aortic cross-clamping-induced ischemia/reperfusion injury. Intensive Care Medicine, 2007, 33, 845-850.	3.9	25
247	Opposite effects of vascular irradiation on inflammatory response and apoptosis induction in the vessel wall layers via the peroxynitrite-poly(ADP-ribose) polymerase pathway. Clinical Research in Cardiology, 2007, 96, 8-16.	1.5	2
248	Role of Poly(ADP-Ribose) Polymerase Activation in the Pathogenesis of Inflammation and Circulatory Shock. , 2007, 280, 184-202.		13
249	Poly(ADP-ribose) Polymerase as a Drug Target for Cardiovascular Disease and Cancer: An Update. Drug News and Perspectives, 2007, 20, 171.	1.9	42
250	Inhibition of poly(adenosine diphosphate-ribose) polymerase by the active form of vitamin D. International Journal of Molecular Medicine, 2007, 19, 947-52.	1.8	37
251	Oxidant-induced cardiomyocyte injury: identification of the cytoprotective effect of a dopamine 1 receptor agonist using a cell-based high-throughput assay. International Journal of Molecular Medicine, 2007, 20, 749-61.	1.8	27
252	Activation of the peroxynitrite-poly(adenosine diphosphate-ribose) polymerase pathway during neointima proliferation: A new target to prevent restenosis after endarterectomy. Journal of Vascular Surgery, 2006, 43, 824-830.	0.6	28

#	Article	IF	CITATIONS
253	Effects of inosine on reperfusion injury after heart transplantationâ~†. European Journal of Cardio-thoracic Surgery, 2006, 30, 96-102.	0.6	29
254	Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol. Pharmacological Reviews, 2006, 58, 87-114.	7.1	984
255	Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Current Opinion in Pharmacology, 2006, 6, 136-141.	1.7	159
256	In vitro effect of the potent poly(ADP-ribose) polymerase (PARP) inhibitor INO-1001 alone and in combination with aspirin, eptifibatide, tirofiban, enoxaparin or alteplase on haemostatic parameters. Life Sciences, 2006, 79, 317-323.	2.0	9
257	Immunomodulatory Effects of Poly(ADP-ribose) Polymerase Inhibition Contribute to Improved Cardiac Function and Survival During Acute Cardiac Rejection. Journal of Heart and Lung Transplantation, 2006, 25, 794-804.	0.3	12
258	Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist?. Nitric Oxide - Biology and Chemistry, 2006, 14, 162-168.	1.2	101
259	Poly(ADP-ribose) polymerase activation by reactive nitrogen species—Relevance for the pathogenesis of inflammation. Nitric Oxide - Biology and Chemistry, 2006, 14, 169-179.	1.2	73
260	Novel modulators of poly(ADP-ribose) polymerase. Trends in Pharmacological Sciences, 2006, 27, 626-630.	4.0	65
261	Activation of the Poly(ADP-Ribose) Polymerase Pathway in Human Heart Failure. Molecular Medicine, 2006, 12, 143-152.	1.9	44
262	Activation of Poly(ADP-Ribose) Polymerase by Myocardial Ischemia and Coronary Reperfusion in Human Circulating Leukocytes. Molecular Medicine, 2006, 12, 221-228.	1.9	43
263	Beneficial effects of a novel ultrapotent poly(ADP-ribose) polymerase inhibitor in murine models of heart failure. International Journal of Molecular Medicine, 2006, 17, 369.	1.8	21
264	Altered calcium handling is an early sign of streptozotocin-induced diabetic cardiomyopathy. International Journal of Molecular Medicine, 2006, 17, 1035.	1.8	14
265	THE PARP-1 INHIBITOR INO-1001 FACILITATES HEMODYNAMIC STABILIZATION WITHOUT AFFECTING DNA REPAIR IN PORCINE THORACIC AORTIC CROSS-CLAMPING-INDUCED ISCHEMIA/REPERFUSION. Shock, 2006, 25, 633-640.	1.0	38
266	Contractile dysfunction in experimental cardiac allograft rejection: role of the poly (ADP-ribose) polymerase pathway*. Transplant International, 2006, 19, 506-513.	0.8	9
267	Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy. International Journal of Radiation Oncology Biology Physics, 2006, 66, 867-875.	0.4	5
268	Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radical Research, 2006, 40, 369-378.	1.5	39
269	Role of the Peroxynitrite - Poly (ADP-Ribose) Polymerase Pathway in the Pathogenesis of Liver Injury. Current Pharmaceutical Design, 2006, 12, 2903-2910.	0.9	24
270	Poly(ADP-Ribose) Polymerase Inhibitors Ameliorate Nephropathy of Type 2 Diabetic Leprdb/db Mice. Diabetes, 2006, 55, 3004-3012.	0.3	128

#	Article	IF	CITATIONS
271	Potential role of poly(adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Critical Care Medicine, 2006, 34, 1073-1079.	0.4	182
272	Indices of Apoptosis Activation After Blood Cardioplegia and Cardiopulmonary Bypass. Circulation, 2006, 114, I-257-I-263.	1.6	38
273	Beneficial effects of a novel ultrapotent poly(ADP-ribose) polymerase inhibitor in murine models of heart failure. International Journal of Molecular Medicine, 2006, 17, 369-75.	1.8	59
274	Role of Nitrosative Stress and Peroxynitrite in the Pathogenesis of Diabetic Complications. Emerging New Therapeutical Strategies. Current Medicinal Chemistry, 2005, 12, 267-275.	1.2	308
275	Mechanisms of cell necrosis. Critical Care Medicine, 2005, 33, S530-S534.	0.4	33
276	Role of Peroxynitrite Anion in Renal Hypothermic Preservation Injury. Transplantation, 2005, 80, 1455-1460.	0.5	8
277	Excessive stimulation of poly(ADP-ribosyl)ation contributes to endothelial dysfunction in pre-eclampsia. British Journal of Pharmacology, 2005, 144, 772-780.	2.7	22
278	Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Reviews Drug Discovery, 2005, 4, 421-440.	21.5	789
279	Poly(ADP-ribose) polymerase regulates myocardial calcium handling in doxorubicin-induced heart failure. Biochemical Pharmacology, 2005, 69, 725-732.	2.0	56
280	Beneficial effects of PJ34 and INO-1001, two novel water-soluble poly(ADP-ribose) polymerase inhibitors, on the consequences of traumatic brain injury in rat. Brain Research, 2005, 1041, 149-156.	1.1	46
281	The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 29-37.	0.8	35
282	Protective Mechanisms of a Metalloporphyrinic Peroxynitrite Decomposition Catalyst, WW85, in Rat Cardiac Transplants. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 53-60.	1.3	33
283	Low-Dose Poly(ADP-Ribose) Polymerase Inhibitor-Containing Combination Therapies Reverse Early Peripheral Diabetic Neuropathy. Diabetes, 2005, 54, 1514-1522.	0.3	73
284	Poly (ADP-Ribose) Polymerase Inhibitors as Potential Therapeutic Agents in Stroke and Neurotrauma. CNS and Neurological Disorders, 2005, 4, 179-194.	4.3	48
285	Aldose Reductase Inhibition Counteracts Oxidative-Nitrosative Stress and Poly(ADP-Ribose) Polymerase Activation in Tissue Sites for Diabetes Complications. Diabetes, 2005, 54, 234-242.	0.3	165
286	Poly(ADP-ribose) polymerase inhibition attenuates biventricular reperfusion injury after orthotopic heart transplantationa~†. European Journal of Cardio-thoracic Surgery, 2005, 27, 226-234.	0.6	24
287	Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair–deficient malignant glioma xenograft. Molecular Cancer Therapeutics, 2005, 4, 1364-1368.	1.9	173
288	Gender Differences in the Endotoxin-Induced Inflammatory and Vascular Responses: Potential Role of Poly(ADP-ribose) Polymerase Activation. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 812-820.	1.3	96

#	Article	IF	CITATIONS
289	Potential role for 8â€oxoguanine DNA glycosylase in regulating inflammation. FASEB Journal, 2005, 19, 1-18.	0.2	98
290	Pharmacological Inhibition of Poly(ADP-ribose) Polymerase in Cardiovascular Disorders: Future Directions. Current Vascular Pharmacology, 2005, 3, 301-303.	0.8	17
291	Discovery of Potent Poly(ADP-ribose) Polymerase-1 Inhibitors from the Modification of Indeno[1,2-c]isoquinolinone. Journal of Medicinal Chemistry, 2005, 48, 5100-5103.	2.9	73
292	POLY(ADENOSINE DIPHOSPHATE-RIBOSE) POLYMERASE INHIBITION PRESERVES ERECTILE FUNCTION IN RATS AFTER CAVERNOUS NERVE INJURY. Journal of Urology, 2005, 174, 2054-2059.	0.2	29
293	Poly(adenosine diphosphate ribose) polymerase inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-reperfusion. Journal of Vascular Surgery, 2005, 41, 99-107.	0.6	23
294	Nitrosative stress and pharmacological modulation of heart failure. Trends in Pharmacological Sciences, 2005, 26, 302-310.	4.0	217
295	Poly (ADP) Ribose Polymerase Inhibition Improves Rat Cardiac Allograft Survival. Annals of Thoracic Surgery, 2005, 80, 950-956.	0.7	20
296	Role of Poly(ADP-Ribose) Polymerase-1 Activation in the Pathogenesis of Diabetic Complications: Endothelial Dysfunction, as a Common Underlying Theme. Antioxidants and Redox Signaling, 2005, 7, 1568-1580.	2.5	158
297	Clinical perspectives of PARP inhibitors. Pharmacological Research, 2005, 52, 109-118.	3.1	130
298	Roles of poly(ADP-ribose) polymerase activation in the pathogenesis of diabetes mellitus and its complications. Pharmacological Research, 2005, 52, 60-71.	3.1	84
299	Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacological Research, 2005, 52, 34-43.	3.1	48
300	Role for nitrosative stress in diabetic neuropathy: evidence from studies with a peroxynitrite decomposition catalyst. FASEB Journal, 2005, 19, 1-21.	0.2	138
301	Poly(ADP-Ribose) Polymerase Promotes Cardiac Remodeling, Contractile Failure, and Translocation of Apoptosis-Inducing Factor in a Murine Experimental Model of Aortic Banding and Heart Failure. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 891-898.	1.3	96
302	Na+,K+-ATPase activity is inhibited in cultured intestinal epithelial cells by endotoxin or nitric oxide. International Journal of Molecular Medicine, 2005, 15, 871-7.	1.8	11
303	Angiotensin II-Mediated Endothelial Dysfunction: Role of Poly(ADP-ribose) Polymerase Activation. Molecular Medicine, 2004, 10, 28-35.	1.9	78
304	Poly(ADP-Ribose) Polymerase Contributes to the Development of Myocardial Infarction in Diabetic Rats and Regulates the Nuclear Translocation of Apoptosis-Inducing Factor. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 498-504.	1.3	58
305	Role of poly(ADP-ribose) polymerase activation in the pathogenesis of cardiopulmonary dysfunction in a canine model of cardiopulmonary bypass. European Journal of Cardio-thoracic Surgery, 2004, 25, 825-832.	0.6	19
306	Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. International Journal of Molecular Medicine, 2004, 13, 373.	1.8	15

#	Article	IF	CITATIONS
307	Poly(ADP-Ribose) Polymerase Is Involved in the Development of Diabetic Retinopathy via Regulation of Nuclear Factor-ÂB. Diabetes, 2004, 53, 2960-2967.	0.3	231
308	Role of Poly(ADP-Ribose) Polymerase Activation in Diabetic Neuropathy. Diabetes, 2004, 53, 711-720.	0.3	224
309	Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: potential role of poly(ADP-ribose) polymerase-1. Cardiovascular Research, 2004, 63, 682-688.	1.8	71
310	Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2132-H2137.	1.5	114
311	Poly(ADP-ribose) polymerase activation in the reperfused myocardium. Cardiovascular Research, 2004, 61, 471-480.	1.8	67
312	Suppression of intestinal polyposis in Apcmin/+ mice by targeting the nitric oxide or poly(ADP-ribose) pathways. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 548, 107-116.	0.4	26
313	The discovery and synthesis of novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorganic and Medicinal Chemistry Letters, 2004, 14, 81-85.	1.0	66
314	The Therapeutic Effects of PJ34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide.HCl], a Selective Inhibitor of Poly(ADP-Ribose) Polymerase, in Experimental Allergic Encephalomyelitis Are Associated with Immunomodulation. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 1053-1061.	1.3	76
315	A New, Potent Poly(ADP-ribose) Polymerase Inhibitor Improves Cardiac and Vascular Dysfunction Associated with Advanced Aging. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 485-491.	1.3	83
316	Role of Poly (ADP) ribose synthetase in lung ischemia—reperfusion injury. Journal of Heart and Lung Transplantation, 2004, 23, 1290-1296.	0.3	14
317	Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Letters, 2004, 205, 155-160.	3.2	66
318	Immunomodulatory and neuroprotective effects of inosine. Trends in Pharmacological Sciences, 2004, 25, 152-157.	4.0	277
319	Restoration of the endothelial function in the aortic rings of apolipoprotein E deficient mice by pharmacological inhibition of the nuclear enzyme poly(ADP-ribose) polymerase. Life Sciences, 2004, 75, 1255-1261.	2.0	36
320	Intratracheal poly (ADP) ribose synthetase inhibition ameliorates lung ischemia reperfusion injury. Annals of Thoracic Surgery, 2004, 77, 1938-1943.	0.7	20
321	Inhibition of Poly (ADP-ribose) Polymerase Attenuates Acute Lung Injury in an Ovine Model of Sepsis. Shock, 2004, 21, 126-133.	1.0	75
322	Mesenteric injury after cardiopulmonary bypass: Role of poly(adenosine 5′-diphosphate-ribose) polymerase*. Critical Care Medicine, 2004, 32, 2392-2397.	0.4	12
323	Activation of Poly(ADP-Ribose) Polymerase in Circulating Leukocytes During Myocardial Infarction. Shock, 2004, 21, 230-234.	1.0	26
324	INO-1001 A NOVEL POLY(ADP-RIBOSE) POLYMERASE (PARP) INHIBITOR IMPROVES CARDIAC AND PULMONARY FUNCTION AFTER CRYSTALLOID CARDIOPLEGIA AND EXTRACORPORAL CIRCULATION. Shock, 2004, 21, 426-432.	1.0	36

#	Article	IF	CITATIONS
325	Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncology Reports, 2004, 11, 505-8.	1.2	59
326	Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. International Journal of Molecular Medicine, 2004, 13, 373-82.	1.8	57
327	Effects of poly(ADP-ribose) polymerase inhibition on inflammatory cell migration in a murine model of asthma. Medical Science Monitor, 2004, 10, BR77-83.	0.5	35
328	Poly(ADP-ribose) polymerase inhibitors counteract diabetes- and hypoxia-induced retinal vascular endothelial growth factor overexpression. International Journal of Molecular Medicine, 2004, 14, 55-64.	1.8	49
329	Nicotinamide: a jack of all trades (but master of none?). Intensive Care Medicine, 2003, 29, 863-866.	3.9	18
330	Poly(ADP-ribose) polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass. Journal of the American College of Surgeons, 2003, 197, 270-277.	0.2	38
331	Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochemical Pharmacology, 2003, 65, 1373-1382.	2.0	620
332	Enhanced peroxynitrite decomposition protects against experimental obliterative bronchiolitis. Experimental and Molecular Pathology, 2003, 75, 12-17.	0.9	13
333	Poly-ADP-ribose polymerase inhibition protects against myocardial and endothelial reperfusion injury after hypothermic cardiac arrest. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 651-658.	0.4	18
334	Peroxynitrite-induced oligodendrocyte toxicity is not dependent on poly(ADP-ribose) polymerase activation. Glia, 2003, 41, 105-116.	2.5	44
335	A dual role for polyâ€ADPâ€ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD ⁺ depletion and ribosylation of 14â€3â€3γ. Journal of Neurochemistry, 2003, 85, 697-708.	2.1	101
336	Multiple pathways of peroxynitrite cytotoxicity. Toxicology Letters, 2003, 140-141, 105-112.	0.4	423
337	Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicology Letters, 2003, 140-141, 113-124.	0.4	379
338	Critical role of reactive nitrogen species in lung ischemia–reperfusion injury. Journal of Heart and Lung Transplantation, 2003, 22, 784-793.	0.3	48
339	Potent Metalloporphyrin Peroxynitrite Decomposition Catalyst Protects Against the Development of Doxorubicin-Induced Cardiac Dysfunction. Circulation, 2003, 107, 896-904.	1.6	263
340	Intra-mitochondrial Poly(ADP-ribosylation) Contributes to NAD+ Depletion and Cell Death Induced by Oxidative Stress. Journal of Biological Chemistry, 2003, 278, 18426-18433.	1.6	282
341	Diabetesâ€induced overexpression of endothelinâ€1 and endothelin receptors in the rat renal cortex is mediated via poly(ADPâ€ribose) polymerase activation. FASEB Journal, 2003, 17, 1-18.	0.2	93
342	Poly (ADP-Ribose) Polymerase Inhibition Prevents Spontaneous and Recurrent Autoimmune Diabetes in NOD Mice by Inducing Apoptosis of Islet-Infiltrating Leukocytes. Diabetes, 2003, 52, 1683-1688.	0.3	43

#	Article	IF	CITATIONS
343	Poly(ADP-Ribose) Polymerase Inhibitors. Current Medicinal Chemistry, 2003, 10, 321-340.	1.2	185
344	Oxidative stress and regional ischemia-reperfusion injury: the peroxynitrite–poly(ADP-ribose) polymerase connection. Coronary Artery Disease, 2003, 14, 115-122.	0.3	22
345	Systemic and Hepatosplanchnic Hemodynamic and Metabolic Effects of the PARP Inhibitor PJ34 During Hyperdynamic Porcine Endotoxemia. Shock, 2003, 19, 415-421.	1.0	23
346	Effect of poly(ADP ribose) synthetase inhibition on burn and smoke inhalation injury in sheep. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L240-L249.	1.3	147
347	Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. Journal of Clinical Investigation, 2003, 112, 1049-1057.	3.9	622
348	Inosine Protects Against the Development of Diabetes in Multiple-Low-Dose Streptozotocin and Nonobese Diabetic Mouse Models of Type 1 Diabetes. Molecular Medicine, 2003, 9, 96-104.	1.9	51
349	PARP inhibition improves the effectiveness of neural stem cell transplantation in experimental brain trauma. International Journal of Molecular Medicine, 2003, 12, 153-9.	1.8	23
350	Poly(ADP-Ribose) Polymerase Inhibition Reduces Reperfusion Injury After Heart Transplantation. Circulation Research, 2002, 90, 100-106.	2.0	160
351	Activation of Poly(ADP-Ribose) Polymerase-1 Is a Central Mechanism of Lipopolysaccharide-Induced Acute Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 372-377.	2.5	187
352	Poly(ADP-Ribose) Polymerase Is Activated in Subjects at Risk of Developing Type 2 Diabetes and Is Associated With Impaired Vascular Reactivity. Circulation, 2002, 106, 2680-2686.	1.6	179
353	The Role of Poly(ADP-Ribose) Polymerase Activation in the Development of Myocardial and Endothelial Dysfunction in Diabetes. Diabetes, 2002, 51, 514-521.	0.3	286
354	Protective effect of a novel, potent inhibitor of poly(adenosine 5′-diphosphate-ribose) synthetase in a porcine model of severe bacterial sepsis*. Critical Care Medicine, 2002, 30, 974-980.	0.4	97
355	Novel phenanthridinone inhibitors of poly(adenosine 5′-diphosphate-ribose) synthetase: Potent cytoprotective and antishock agents*. Critical Care Medicine, 2002, 30, 1071-1082.	0.4	187
356	Inosine Exerts a Broad Range of Antiinflammatory Effects in a Murine Model of Acute Lung Injury. Annals of Surgery, 2002, 235, 568-578.	2.1	81
357	Resistance to Acute Septic Peritonitis in Poly(ADP-ribose) Polymerase-1-Deficient Mice. Shock, 2002, 17, 286-292.	1.0	148
358	The Therapeutic Potential of Poly(ADP-Ribose) Polymerase Inhibitors. Pharmacological Reviews, 2002, 54, 375-429.	7.1	1,236
359	Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. Journal of the American College of Cardiology, 2002, 40, 1006-1016.	1.2	100
360	Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Annals of Thoracic Surgery, 2002, 73, 575-581.	0.7	65

#	Article	IF	CITATIONS
361	A novel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemia-reperfusion in pigs. Annals of Thoracic Surgery, 2002, 74, 1201-1207.	0.7	49
362	Adenosine: a potential mediator of immunosuppression in multiple organ failure. Current Opinion in Pharmacology, 2002, 2, 440-444.	1.7	50
363	Part II: Beneficial Effects of the Peroxynitrite Decomposition Catalyst FP15 in Murine Models of Arthritis and Colitis. Molecular Medicine, 2002, 8, 581-590.	1.9	50
364	Poly(ADP-ribose) Polymerase is a Regulator of Chemokine Production: Relevance for the Pathogenesis of Shock and Inflammation. Molecular Medicine, 2002, 8, 283-289.	1.9	54
365	Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents. Biochemical Pharmacology, 2002, 64, 1785-1791.	2.0	53
366	Nitric oxide-peroxynitrite-poly(ADP-ribose) polymerase pathway in the skin. Experimental Dermatology, 2002, 11, 189-202.	1.4	74
367	Intranuclear localization of apoptosis-inducing factor (AIF) and large scale dna fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. Journal of Neurochemistry, 2002, 82, 181-191.	2.1	245
368	Endothelial dysfunction in aging animals: the role of poly(ADP-ribose) polymerase activation. British Journal of Pharmacology, 2002, 135, 1347-1350.	2.7	88
369	Part I: Pathogenetic Role of Peroxynitrite in the Development of Diabetes and Diabetic Vascular Complications: Studies With FP15, A Novel Potent Peroxynitrite Decomposition Catalyst. Molecular Medicine, 2002, 8, 571-580.	1.9	162
370	Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Molecular Medicine, 2002, 8, 571-80.	1.9	80
371	Poly(ADP-ribose) polymerase is a regulator of chemokine production: relevance for the pathogenesis of shock and inflammation. Molecular Medicine, 2002, 8, 283-9.	1.9	24
372	Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. International Journal of Molecular Medicine, 2002, 9, 659-64.	1.8	54
373	An Inhibitor of Inducible Nitric Oxide Synthase and Scavenger of Peroxynitrite Prevents Diabetes Development in NOD Mice. Journal of Autoimmunity, 2001, 16, 449-455.	3.0	98
374	Myocardial Ischemic Preconditioning in Rodents Is Dependent on Poly (ADP-Ribose) Synthetase. Molecular Medicine, 2001, 7, 406-417.	1.9	45
375	Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase. Inflammation Research, 2001, 50, 561-569.	1.6	121
376	Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nature Medicine, 2001, 7, 108-113.	15.2	593
377	Inhibition of poly (ADP-ribose) synthetase by gene disruption or inhibition with 5-iodo-6-amino-1,2-benzopyrone protects mice from multiple-low-dose-streptozotocin-induced diabetes. British Journal of Pharmacology, 2001, 133, 909-919.	2.7	59
378	Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: long-term morphological and functional consequences. British Journal of Pharmacology, 2001, 133, 1424-1430.	2.7	77

#	Article	IF	CITATIONS
379	Partial protection by poly(ADP-ribose) polymerase inhibitors from nitroxyl-induced cytotoxity in thymocytes. Free Radical Biology and Medicine, 2001, 31, 1616-1623.	1.3	40
380	Purines inhibit poly(ADPâ€ribose) polymerase activation and modulate oxidantâ€induced cell death. FASEB Journal, 2001, 15, 99-107.	0.2	116
381	Anti-inflammatory effects of inosine in human monocytes, neutrophils and epithelial cells in vitro. International Journal of Molecular Medicine, 2001, 8, 617.	1.8	22
382	Inosine Reduces Systemic Inflammation and Improves Survival in Septic Shock Induced by Cecal Ligation and Puncture. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1213-1220.	2.5	83
383	Role of Nitric Oxide in Vascular Permeability after Combined Burns and Smoke Inhalation Injury. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 745-752.	2.5	127
384	EFFECT OF GENETIC DISRUPTION OF POLY (ADP-RIBOSE) SYNTHETASE ON DELAYED PRODUCTION OF INFLAMMATORY MEDIATORS AND DELAYED NECROSIS DURING MYOCARDIAL ISCHEMIA-REPERFUSION INJURY. Shock, 2000, 13, 60-66.	1.0	80
385	Biology of nitric oxide signaling. Critical Care Medicine, 2000, 28, N37-N52.	0.4	301
386	Inosine Inhibits Inflammatory Cytokine Production by a Posttranscriptional Mechanism and Protects Against Endotoxin-Induced Shock. Journal of Immunology, 2000, 164, 1013-1019.	0.4	287
387	POLY (ADP-RIBOSE) SYNTHETASE MEDIATES INTESTINAL MUCOSAL BARRIER DYSFUNCTION AFTER MESENTERIC ISCHEMIA. Shock, 2000, 14, 134-141.	1.0	76
388	Effects of Nitric Oxide in Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1781-1785.	2.5	344
389	Immunohistochemical Localization of Protein 3-Nitrotyrosine and S-nitrosocysteine in a Murine Model of Inhaled Nitric Oxide Therapy. Pediatric Research, 2000, 47, 798-805.	1.1	36
390	Inhibition of poly(ADP-ribose) synthetase (PARS) and protection against peroxynitrite-induced cytotoxicity by zinc chelation. British Journal of Pharmacology, 1999, 126, 769-777.	2.7	33
391	Reduction of Cognitive and Motor Deficits after Traumatic Brain Injury in Mice Deficient in Poly(ADP-Ribose) Polymerase. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 835-842.	2.4	151
392	Blockade of poly(ADP-ribose) synthetase inhibits neutrophil recruitment, oxidant generation, and mucosal injury in murine colitis. Gastroenterology, 1999, 116, 335-345.	0.6	141
393	Protection against Hypoxia-reoxygenation in the Absence of Poly (ADP-ribose) Synthetase in Isolated Working Hearts. Journal of Molecular and Cellular Cardiology, 1999, 31, 297-303.	0.9	55
394	Beneficial effects of mercaptoethylguanidine, an inhibitor of the inducible isoform of nitric oxide synthase and a scavenger of peroxynitrite, in a porcine model of delayed hemorrhagic shock. Critical Care Medicine, 1999, 27, 1343-1350.	0.4	46
395	Inhibitors of Nitric Oxide Biosynthesis. , 1999, , 127-162.		1
396	Molecular Mechanisms of the Nitric Oxide Induced Vessel Wall Dysfunction in Sepsis. Sepsis, 1998, 1, 107-114.	0.5	0

#	Article	IF	CITATIONS
397	Protective effects of mercaptoethylguanidine, a selective inhibitor of inducible nitric oxide synthase, in ligature-induced periodontitis in the rat. British Journal of Pharmacology, 1998, 123, 353-360.	2.7	170
398	Effect of L -buthionine-(S,R)-sulphoximine, an inhibitor of Î ³ -glutamylcysteine synthetase on peroxynitrite- and endotoxic shock-induced vascular failure. British Journal of Pharmacology, 1998, 123, 525-537.	2.7	81
399	Modulation by dantrolene of endotoxin-induced interleukin-10, tumour necrosis factor-α and nitric oxide production in vivo and in vitro. British Journal of Pharmacology, 1998, 124, 1099-1106.	2.7	26
400	Suppression of macrophage inflammatory protein (MIP)-1α production and collagen-induced arthritis by adenosine receptor agonists. British Journal of Pharmacology, 1998, 125, 379-387.	2.7	165
401	Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism. British Journal of Pharmacology, 1998, 125, 1297-1303.	2.7	79
402	Regulation of the Expression of the Inducible Isoform of Nitric Oxide Synthase by Glucocorticoidsa. Annals of the New York Academy of Sciences, 1998, 851, 336-341.	1.8	18
403	Role of Nitric Oxide in Endotoxic Shocka: An Overview of Recent Advances. Annals of the New York Academy of Sciences, 1998, 851, 422-425.	1.8	43
404	Protective effects of 5-iodo-6-amino-1,2-benzopyrone, an inhibitor of poly(ADP-ribose) synthetase against peroxynitrite-induced glial damage and stroke development. European Journal of Pharmacology, 1998, 351, 377-382.	1.7	46
405	Antiinflammatory Effects of Mercaptoethylguanidine, a Combined Inhibitor of Nitric Oxide Synthase and Peroxynitrite Scavenger, in Carrageenan-induced Models of Inflammation. Free Radical Biology and Medicine, 1998, 24, 450-459.	1.3	203
406	Crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radical Biology and Medicine, 1998, 25, 1075-1082.	1.3	72
407	The crucial role of IL-10 in the suppression of the immunological response in mice exposed to staphylococcal enterotoxin B. European Journal of Immunology, 1998, 28, 1417-1425.	1.6	67
408	Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion. Neuroscience Letters, 1998, 248, 41-44.	1.0	112
409	Poly(ADP-ribose) synthetase activation mediates increased permeability induced by peroxynitrite in Caco-2BBe cells. Gastroenterology, 1998, 114, 510-518.	0.6	93
410	Protective effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthase in a carrageenan-induced model of local inflammation. European Journal of Pharmacology, 1998, 342, 67-76.	1.7	80
411	Role of poly(ADP-ribose)synthetase in inflammation. European Journal of Pharmacology, 1998, 350, 1-19.	1.7	100
412	NADPH Diaphorase Histochemistry Detects Inducible Nitric Oxide Synthetase Activity in the Thymus of Naive and Staphylococcal Enterotoxin B-stimulated Mice. Journal of Histochemistry and Cytochemistry, 1998, 46, 787-791.	1.3	8
413	POTENTIAL ROLE OF THE PEROXYNITRITE-POLY(ADP-RIBOSE) SYNTHETASE PATHWAY IN A RAT MODEL OF SEVERE HEMORRHAGIC SHOCK. Shock, 1998, 9, 341-344.	1.0	63
414	3-AMINOBENZAMIDE, AN INHIBITOR OF POLY (ADP-RIBOSE) SYNTHETASE, IMPROVES HEMODYNAMICS AND PROLONGS SURVIVAL IN A PORCINE MODEL OF HEMORRHAGIC SHOCK. Shock, 1998, 10, 347-353.	1.0	34

#	Article	IF	CITATIONS
415	Proinflammatory cytokines depress cardiac efficiency by a nitric oxide-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1016-H1023.	1.5	38
416	Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFIºB activation. FASEB Journal, 1998, 12, 685-693.	0.2	252
417	Mercaptoethylguanidine and Guanidine Inhibitors of Nitric-oxide Synthase React with Peroxynitrite and Protect against Peroxynitrite-induced Oxidative Damage. Journal of Biological Chemistry, 1997, 272, 9030-9036.	1.6	153
418	Inhibition of poly (ADP-ribose) Synthetase Attenuates Neutrophil Recruitment and Exerts Antiinflammatory Effects. Journal of Experimental Medicine, 1997, 186, 1041-1049.	4.2	277
419	NITRIC OXIDE, PEROXYNITRITE AND POLY (ADPRIBOSE) SYNTHETASE ACTIVATION: ROLE IN THE SUPPRESSION OF CELLULAR ENERGETICS. Biochemical Society Transactions, 1997, 25, 384S-384S.	1.6	0
420	Amelioration by mercaptoethylguanidine of the vascular and energetic failure in haemorrhagic shock in the anesthetised rat. European Journal of Pharmacology, 1997, 338, 55-65.	1.7	45
421	Protection by Inhibition of Poly (ADP-ribose) Synthetase Against Oxidant Injury in Cardiac MyoblastsIn Vitro. Journal of Molecular and Cellular Cardiology, 1997, 29, 2585-2597.	0.9	79
422	DNA Damage Induced by Peroxynitrite: Subsequent Biological Effects. Nitric Oxide - Biology and Chemistry, 1997, 1, 373-385.	1.2	411
423	Endogenously produced peroxynitrite induces the oxidation of mitochondrial and nuclear proteins in immunostimulated macrophages. FEBS Letters, 1997, 409, 147-150.	1.3	34
424	Protective effect of melatonin in carrageenan-induced models of local inflammation: Relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. Journal of Pineal Research, 1997, 23, 106-116.	3.4	245
425	The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. British Journal of Pharmacology, 1997, 120, 259-267.	2.7	211
426	The inhibitory effects of mercaptoalkylguanidines on cyclo-oxygenase activity. British Journal of Pharmacology, 1997, 120, 357-366.	2.7	58
427	Beneficial effects of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase in a rat model of splanchnic artery occlusion and reperfusion. British Journal of Pharmacology, 1997, 121, 1065-1074.	2.7	156
428	Role of peroxynitrite and activation of poly (ADP-ribose) synthetase in the vascular failure induced by zymosan-activated plasma. British Journal of Pharmacology, 1997, 122, 493-503.	2.7	40
429	Spontaneous rearrangement of aminoalkylisothioureas into mercaptoalkylguanidines, a novel class of nitric oxide synthase inhibitors with selectivity towards the inducible isoform. British Journal of Pharmacology, 1996, 117, 619-632.	2.7	71
430	Pharmacological characterization of guanidinoethyldisulphide (GED), a novel inhibitor of nitric oxide synthase with selectivity towards the inducible isoform. British Journal of Pharmacology, 1996, 118, 1659-1668.	2.7	54
431	Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochemical Pharmacology, 1996, 51, 383-394.	2.0	544
432	Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Letters, 1996, 381, 82-86.	1.3	207

#	Article	IF	CITATIONS
433	Pre-exposure to heat shock inhibits peroxynitrite-induced activation of poly(ADP) ribosyltransferase and protects against peroxynitrite cytotoxicity in J774 macrophages. European Journal of Pharmacology, 1996, 315, 221-226.	1.7	20
434	PROTECTIVE EFFECTS OF NICOTINAMIDE AGAINST NITRIC OXIDE-MEDIATED DELAYED VASCULAR FAILURE IN ENDOTOXIC SHOCK. Shock, 1996, 5, 258-264.	1.0	56
435	THE PATHOPHYSIOLOGICAL ROLE OF PEROXYNITRITE IN SHOCK, INFLAMMATION, AND ISCHEMIA-REPERFUSION INJURY. Shock, 1996, 6, 79-88.	1.0	441
436	Regulation of the Expression of the Inducible Isoform of Nitric Oxide Synthase. Advances in Pharmacology, 1995, 34, 113-153.	1.2	100
437	Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Letters, 1995, 363, 235-238.	1.3	215
438	Peroxynitrite-mediated oxidation of dihydrorhodamine 123 occurs in early stages of endotoxic and hemorrhagic shock and ischemia-reperfusion injury. FEBS Letters, 1995, 372, 229-232.	1.3	152
439	Poly (ADP-Ribose) Polymerase Activation and Circulatory Shock. Novartis Foundation Symposium, 0, , 92-107.	1.2	20