
Paul J Pfaffinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8669261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature, 1998, 392, 945-948.	27.8	292
2	Deletion analysis of K+ channel assembly. Neuron, 1993, 11, 67-76.	8.1	230
3	Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nature Structural Biology, 1999, 6, 38-43.	9.7	150
4	Modulation of Kv4.2 Channel Expression and Gating by Dipeptidyl Peptidase 10 (DPP10). Biophysical Journal, 2004, 87, 2380-2396.	0.5	121
5	Shaker K+ Channel T1 Domain Self-tetramerizes to a Stable Structure. Journal of Biological Chemistry, 1995, 270, 28595-28600.	3.4	46
6	A Central Role for the T1 Domain in Voltage-gated Potassium Channel Formation and Function. Journal of Biological Chemistry, 2001, 276, 28493-28502.	3.4	43
7	KChIP3 Rescues the Functional Expression of Shal Channel Tetramerization Mutants. Journal of Biological Chemistry, 2004, 279, 54542-54551.	3.4	39
8	Dipeptidyl Peptidase-Like Protein 6 Is Required for Normal Electrophysiological Properties of Cerebellar Granule Cells. Journal of Neuroscience, 2010, 30, 8551-8565.	3.6	29
9	The Role of Zn2+ in Shal Voltage-gated Potassium Channel Formation. Journal of Biological Chemistry, 2003, 278, 31361-31371.	3.4	21
10	S-Glutathionylation of an Auxiliary Subunit Confers Redox Sensitivity to Kv4 Channel Inactivation. PLoS ONE, 2014, 9, e93315.	2.5	14
11	Multiple intermediate states precede pore block during N-type inactivation of a voltage-gated potassium channel. Journal of General Physiology, 2009, 134, 15-34.	1.9	13
12	Functional stoichiometry underlying <scp>KC</scp> h <scp>IP</scp> regulation of Kv4.2 functional expression. Journal of Neurochemistry, 2013, 126, 462-472.	3.9	10
13	Excitability is Mediated by the T1 Domain of the Voltage-Gated Potassium Channel. Novartis Foundation Symposium, 2008, , 169-177.	1.1	6
14	A New TASK for Dipeptidyl Peptidase-like Protein 6. PLoS ONE, 2013, 8, e60831.	2.5	6
15	Light-regulated voltage-gated potassium channels for acute interrogation of channel function in neurons and behavior. PLoS ONE, 2021, 16, e0248688.	2.5	4
16	Conserved N-Terminal Negative Charges Support Optimally Efficient N-type Inactivation of Kv1 Channels. PLoS ONE, 2013, 8, e62695.	2.5	3
17	A Conserved Pre-Block Interaction Motif Regulates Potassium Channel Activation and N-Type Inactivation. PLoS ONE, 2013, 8, e79891.	2.5	3
18	When names are less than crystal clear. Nature, 1998, 394, 216-216.	27.8	0