List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667992/publications.pdf Version: 2024-02-01

		126907	182427
120	3,507	33	51
papers	citations	h-index	g-index
121	121	121	3175
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	With a Little Help from My Cell Wall: Structural Modifications in Pectin May Play a Role to Overcome Both Dehydration Stress and Fungal Pathogens. Plants, 2022, 11, 385.	3.5	5
2	The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 2022, 606, 113-119.	27.8	70
3	Genome Assembly of the Canadian two-row Malting Barley cultivar AAC Synergy. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
4	Characterizing chloroplast genomes and inferring maternal divergence of the Triticum–Aegilops complex. Scientific Reports, 2021, 11, 15363.	3.3	8
5	Patterns of Genetic Variation in a Soybean Germplasm Collection as Characterized with Genotyping-by-Sequencing. Plants, 2021, 10, 1611.	3.5	6
6	Tissue specific changes in elements and organic compounds of alfalfa (Medicago sativa L.) cultivars differing in salt tolerance under salt stress. Journal of Plant Physiology, 2021, 264, 153485.	3.5	11
7	Transcriptomic analysis of differentially expressed genes in leaves and roots of two alfalfa (Medicago) Tj ETQq1 1	0.784314 3.6	4 rgBT /Over
8	Advancing crested wheatgrass [Agropyron cristatum (L.) Gaertn.] breeding through genotyping-by-sequencing and genomic selection. PLoS ONE, 2020, 15, e0239609.	2.5	6
9	Analysis of Stored mRNA Degradation in Acceleratedly Aged Seeds of Wheat and Canola in Comparison to Arabidopsis. Plants, 2020, 9, 1707.	3.5	4
10	Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Science, 2020, 297, 110520.	3.6	10
11	Patterns of mitochondrial DNA fragmentation in bread wheat (Triticum aestivum L.) seeds under ex situ genebank storage and artificial aging. Genetic Resources and Crop Evolution, 2020, 67, 2023-2036.	1.6	0
12	Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. Agronomy, 2020, 10, 577.	3.0	48
13	Developing Chloroplast Genomic Resources from 25 Avena Species for the Characterization of Oat Wild Relative Germplasm. Plants, 2019, 8, 438.	3.5	4
14	Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. Scientific Reports, 2019, 9, 976.	3.3	14
15	Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20002-20008.	7.1	18
16	Arabidopsis <i><scp>UBC</scp>13</i> differentially regulates two programmed cell death pathways in responses to pathogen and lowâ€ŧemperature stress. New Phytologist, 2019, 221, 919-934.	7.3	56
17	Arabidopsis Seed Stored mRNAs are Degraded Constantly over Aging Time, as Revealed by New Quantification Methods. Frontiers in Plant Science, 2019, 10, 1764.	3.6	21
18	Advancing Bromegrass Breeding Through Imaging Phenotyping and Genomic Selection: A Review. Frontiers in Plant Science, 2019, 10, 1673.	3.6	7

#	Article	IF	CITATIONS
19	A Molecular View of Flax Gene Pool. Plant Genetics and Genomics: Crops and Models, 2019, , 17-37.	0.3	4
20	Genetic diversity and relationship of sainfoin (<i>Onobrychis viciifolia</i> Scop.) germplasm as revealed by amplified fragment length polymorphism markers. Canadian Journal of Plant Science, 2018, 98, 543-551.	0.9	6
21	Oat evolution revealed in the maternal lineages of 25 Avena species. Scientific Reports, 2018, 8, 4252.	3.3	28
22	Genome reâ€sequencing and simple sequence repeat markers reveal the existence of divergent lineages in the Canadian <i>Puccinia striiformis</i> f. sp. <i>tritici</i> population with extensive DNA methylation. Environmental Microbiology, 2018, 20, 1498-1515.	3.8	21
23	TUNEL Assay and DAPI Staining Revealed Few Alterations of Cellular Morphology in Naturally and Artificially Aged Seeds of Cultivated Flax. Plants, 2018, 7, 34.	3.5	9
24	Genotyping-by-Sequencing Enhances Genetic Diversity Analysis of Crested Wheatgrass [Agropyron cristatum (L.) Gaertn.]. International Journal of Molecular Sciences, 2018, 19, 2587.	4.1	14
25	Genetic Diversity of Northern Wheatgrass (Elymus lanceolatus ssp. lanceolatus) as Revealed by Genotyping-by-Sequencing. Diversity, 2018, 10, 23.	1.7	3
26	Genotyping-by-sequencing empowered genetic diversity analysis of Jordanian oat wild relative Avena sterilis. Genetic Resources and Crop Evolution, 2018, 65, 2069-2082.	1.6	5
27	Patterns of SSR variation in bread wheat (Triticum aestivum L.) seeds under ex situ genebank storage and accelerated ageing. Genetic Resources and Crop Evolution, 2017, 64, 277-290.	1.6	12
28	Genotyping-by-Sequencing and Its Application to Oat Genomic Research. Methods in Molecular Biology, 2017, 1536, 169-187.	0.9	9
29	Genotyping-by-sequencing data of 272 crested wheatgrass (Agropyron cristatum) genotypes. Data in Brief, 2017, 15, 401-406.	1.0	2
30	QTL mapping and molecular characterization of the classical D locus controlling seed and flower color in Linum usitatissimum (flax). Scientific Reports, 2017, 7, 15751.	3.3	17
31	An R version of FPTest for testing differences in allelic count. Conservation Genetics Resources, 2017, 9, 313-318.	0.8	2
32	AveDissR: An R Function for Assessing Genetic Distinctness and Genetic Redundancy. Applications in Plant Sciences, 2017, 5, 1700018.	2.1	12
33	Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding. Frontiers in Plant Science, 2017, 8, 1182.	3.6	24
34	RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron) Tj ETQq0 0 0 rgl	3T /Qverloo	ck 10 Tf 50 14
35	The Vulnerability of Plant Genetic Resources Conserved Ex Situ. Crop Science, 2017, 57, 2314-2328.	1.8	88

#	Article	IF	CITATIONS
37	The Associative Changes in Scutellum Nuclear Content and Morphology with Viability Loss of Naturally Aged and Accelerated Aging Wheat (Triticum aestivum) Seeds. Frontiers in Plant Science, 2016, 7, 1474.	3.6	14
38	Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes. G3: Genes, Genomes, Genetics, 2016, 6, 845-856.	1.8	51
39	Multiplexed shotgun sequencing reveals congruent three-genome phylogenetic signals for four botanical sections of the flax genus Linum. Molecular Phylogenetics and Evolution, 2016, 101, 122-132.	2.7	15
40	High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theoretical and Applied Genetics, 2016, 129, 2133-2149.	3.6	56
41	An improved method with a wider applicability to isolate plant mitochondria for mtDNA extraction. Plant Methods, 2015, 11, 56.	4.3	14
42	Towards a better monitoring of seed ageing under <i>ex situ</i> seed conservation. , 2015, 3, cov026.		78
43	Understanding crop genetic diversity under modern plant breeding. Theoretical and Applied Genetics, 2015, 128, 2131-2142.	3.6	195
44	Genetic Erosion Under Modern Plant Breeding: Case Studies in Canadian Crop Gene Pools. Sustainable Development and Biodiversity, 2015, , 89-104.	1.7	7
45	Thai elite cassava genetic diversity was fortuitously conserved through farming with different sets of varieties. Conservation Genetics, 2014, 15, 1463-1478.	1.5	16
46	Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment. G3: Genes, Genomes, Genetics, 2014, 4, 891-900.	1.8	53
47	Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping. Diversity, 2014, 6, 665-680.	1.7	91
48	Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genetic Resources and Crop Evolution, 2014, 61, 579-594.	1.6	41
49	Evaluating genetic variation and relationships among <i>Puccinellia nuttalliana</i> populations using amplified fragment length polymorphism markers. Canadian Journal of Plant Science, 2013, 93, 1097-1104.	0.9	5
50	Genetic diversity of side-oats grama [<i>Bouteloua curtipendula</i> (Michx.) Torr.] populations as revealed by amplified fragment length polymorphism markers. Canadian Journal of Plant Science, 2013, 93, 1105-1114.	0.9	5
51	Extractions of High Quality RNA from the Seeds of Jerusalem Artichoke and Other Plant Species with High Levels of Starch and Lipid. Plants, 2013, 2, 302-316.	3.5	25
52	Genetic Structure in a Core Subset of Cultivated Barley Germplasm. Crop Science, 2012, 52, 1195-1208.	1.8	3
53	Biological and genetic characterisation of <i>Phoma macrostoma</i> isolates with bioherbicidal activity. Biocontrol Science and Technology, 2012, 22, 813-835.	1.3	11
54	Population-based resequencing analysis of wild and cultivated barley revealed weak domestication signal of selection and bottleneck in the <i>Rrs2</i> scald resistance gene region. Genome, 2012, 55, 93-104.	2.0	23

#	Article	IF	CITATIONS
55	Evolution of wild cereals during 28 years of global warming in Israel. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3412-3415.	7.1	175
56	Genetic Diversity in A Core Subset of Wild Barley Germplasm. Diversity, 2012, 4, 239-257.	1.7	12
57	Populationâ€based resequencing revealed an ancestral winter group of cultivated flax: implication for flax domestication processes. Ecology and Evolution, 2012, 2, 622-635.	1.9	11
58	Locusâ€specific view of flax domestication history. Ecology and Evolution, 2012, 2, 139-152.	1.9	53
59	Developing genomic resources in two <i>Linum</i> species via 454 pyrosequencing and genomic reduction. Molecular Ecology Resources, 2012, 12, 492-500.	4.8	35
60	Variation in phenotypic characters of pale flax (Linum bienne Mill.) from Turkey. Genetic Resources and Crop Evolution, 2012, 59, 19-30.	1.6	18
61	Comparison of five DNA extraction methods for molecular analysis of Jerusalem artichoke (Helianthus tuberosus). Genetics and Molecular Research, 2012, 11, 572-581.	0.2	10
62	Assessing Genetic Structure and Relatedness of Jerusalem Artichoke (<i>Helianthus) Tj ETQq0 C Plant Sciences, 2011, 02, 753-764.</i>	0 rgBT /Ov 0.8	verlock 10 Tf 5 10
63	Genetic Diversity Analysis with 454 Pyrosequencing and Genomic Reduction Confirmed the Eastern and Western Division in the Cultivated Barley Gene Pool. Plant Genome, 2011, 4, 226-237.	2.8	42
64	Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers. Genetics and Molecular Research, 2011, 10, 4012-4025.	0.2	9
65	Allelic changes in bread wheat cultivars were associated with long-term wheat trait improvements. Euphytica, 2011, 179, 209-225.	1.2	27
66	Genetic evidence for early flax domestication with capsular dehiscence. Genetic Resources and Crop Evolution, 2011, 58, 1119-1128.	1.6	67
67	Genetic Diversity of Kenyan Potato Germplasm Revealed by Simple Sequence Repeat Markers. American Journal of Potato Research, 2011, 88, 424-434.	0.9	10
68	Genetic Risk Assessment of a Threatened Remnant Population of Hairy Prairie-Clover (Dalea villosa var.) Tj ETQ	0 0 0 rgBT 1.7gBT	/Oyerlock 10
69	Genetic diversity of Canadian elite summer rape (Brassica napus L.) cultivars from the pre- to post-canola quality era. Canadian Journal of Plant Science, 2010, 90, 23-33.	0.9	32
70	Population-based resequencing analysis of improved wheat germplasm at wheat leaf rust resistance locus Lr21. Theoretical and Applied Genetics, 2010, 121, 271-281.	3.6	11
71	Phylogenetic network of Linum species as revealed by non-coding chloroplast DNA sequences. Genetic Resources and Crop Evolution, 2010, 57, 667-677.	1.6	60
72	Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum) Tj ETQq0 () 0 rgBT /Oʻ 1.6	verlogk 10 Tf 5

#	Article	IF	CITATIONS
73	Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian prairie. Environmental and Experimental Botany, 2010, 67, 479-486.	4.2	40
74	Patterns of amplified restriction fragment polymorphism in the germination of Festuca hallii seeds. Seed Science Research, 2010, 20, 153-161.	1.7	0
75	fptest : a sas routine for testing differences in allelic count. Molecular Ecology Resources, 2010, 10, 389-392.	4.8	17
76	Characterization of expressed sequence tag-derived simple sequence repeat markers for 17 <i>Linum</i> species. Botany, 2010, 88, 537-543.	1.0	16
77	Genomeâ€Wide Reduction of Genetic Diversity in Wheat Breeding. Crop Science, 2009, 49, 161-168.	1.8	124
78	Genetic Diversity of Canadian and Exotic Potato Germplasm Revealed by Simple Sequence Repeat Markers. American Journal of Potato Research, 2009, 86, 38-48.	0.9	34
79	Genetic variation in remnant <i>Festuca hallii</i> populations is weakly differentiated, but geographically associated across the Canadian Prairie. Plant Species Biology, 2009, 24, 156-168.	1.0	14
80	Genetic variability of Canadian elite cultivars of summer turnip rape (<i>Brassica rapa</i> L.) revealed by simple sequence repeat markers. Canadian Journal of Plant Science, 2009, 89, 865-874.	0.9	10
81	AFLP variation in 25 Avena species. Theoretical and Applied Genetics, 2008, 117, 333-342.	3.6	36
82	Interpolating Genetic Variation in Natural Populations: A Case Study of Plains Rough Fescue (Festuca) Tj ETQq	0 0 0 rgBT /	Overlock 10 T
83	Patterns of amplified restriction fragment polymorphism in natural populations and corresponding seed collections of plains rough fescue (<i>Festuca hallii</i>). Canadian Journal of Botany, 2007, 85, 484-492.	1.1	14
84	Genetic Diversity of Canadian Soybean Cultivars and Exotic Germplasm Revealed by Simple Sequence Repeat Markers. Crop Science, 2007, 47, 1947-1954.	1.8	33
85	Microsatellite variation in Avena sterilis oat germplasm. Theoretical and Applied Genetics, 2007, 114, 1029-1038.	3.6	31
86	Genetic diversity of bluebunch wheatgrass (Pseudoroegneria spicata) in the Thompson River valley of British Columbia. Canadian Journal of Botany, 2006, 84, 1122-1128.	1.1	2
87	Impact of plant breeding on genetic diversity of agricultural crops: searching for molecular evidence. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 71-78.	0.8	48
88	Characterization of microsatellite markers for rough fescue species (Festuca spp.). Molecular Ecology Notes, 2006, 6, 894-896.	1.7	7
89	Phenotypic and Molecular (RAPD) Differentiation of Four Infraspecific Groups of Cultivated Flax (Linum usitatissimum L. subsp. usitatissimum). Genetic Resources and Crop Evolution, 2006, 53, 77-90.	1.6	56
90	Genetic Variation and Relationships of Pedigree-Known Oat, Wheat, and Barley Cultivars Releaved by	1.6	7

Genetic Variation and Relationships of Pedigree-Known Oat, Wheat, and Barley Cultivars Releaved by Bulking and Single-Plant Sampling. Genetic Resources and Crop Evolution, 2006, 53, 1153-1164. 90 1.6

#	Article	IF	CITATIONS
91	Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theoretical and Applied Genetics, 2006, 112, 1239-1247.	3.6	77
92	Genetic diversity of Sinapis alba germplasm as revealed by AFLP markers. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 87-95.	0.8	7
93	Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 117-124.	0.8	51
94	Geographic Patterns of RAPD Variation in Cultivated Flax. Crop Science, 2005, 45, 1084-1091.	1.8	46
95	Evidence of the domestication history of flax (Linum usitatissimum L.) from genetic diversity of the sad2 locus. Theoretical and Applied Genetics, 2005, 112, 58-65.	3.6	155
96	Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. Theoretical and Applied Genetics, 2005, 110, 1505-1516.	3.6	82
97	Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genetic Resources and Crop Evolution, 2005, 52, 239-244.	1.6	26
98	Detecting Genetic Changes over Two Generations of Seed Increase in an Awned Slender Wheatgrass Population Using AFLP Markers. Crop Science, 2005, 45, 1064-1068.	1.8	17
99	Genetic diversity of fringed brome (Bromus ciliatus) as determined by amplified fragment length polymorphism. Canadian Journal of Botany, 2005, 83, 1322-1328.	1.1	13
100	Long-Term Grazing Effects on Genetic Variability in Mountain Rough Fescue. Rangeland Ecology and Management, 2005, 58, 637-642.	2.3	24
101	Genetic Diversity in Natural Populations and Corresponding Seed Collections of Little Bluestem as Revealed by AFLP Markers. Crop Science, 2004, 44, 2254-2260.	1.8	31
102	AFLP Variation in Four Blue Grama Seed Sources. Crop Science, 2004, 44, 283-288.	1.8	19
103	Marker-Based Inferences about the Genetic basis of Flowering time in Mimulus Guttatus. Hereditas, 2004, 121, 267-272.	1.4	4
104	Assessment of bulking strategies for RAPD analyses of flax germplasm. Genetic Resources and Crop Evolution, 2003, 50, 743-746.	1.6	14
105	Applications of bulking in molecular characterization of plant germplasm: a critical review. Plant Genetic Resources: Characterisation and Utilisation, 2003, 1, 161-167.	0.8	20
106	Allelic Diversity Changes in 96 Canadian Oat Cultivars Released from 1886 to 200 ¹ . Crop Science, 2003, 43, 1989-1995.	1.8	93
107	RAPD Analysis of 54 North American Flax Cultivars. Crop Science, 2003, 43, 1510-1515.	1.8	59
108	RAPD Variations in Selected and Unselected Blue Grama Populations. Crop Science, 2003, 43, 1852-1857.	1.8	11

Υοης-Βι Fu

#	Article	IF	CITATIONS
109	Title is missing!. Genetic Resources and Crop Evolution, 2002, 49, 167-174.	1.6	65
110	RAPD analysis of genetic relationships of seven flax species in the genus Linum L. Genetic Resources and Crop Evolution, 2002, 49, 253-259.	1.6	59
111	Incomplete block designs for genetic testing: some practical considerations. Canadian Journal of Forest Research, 1999, 29, 1871-1878.	1.7	16
112	Spatial patterns of tree height variations in a series of Douglas-fir progeny trials: implications for genetic testing. Canadian Journal of Forest Research, 1999, 29, 714-723.	1.7	45
113	Comment-Enhanced heritabilities and best linear unbiased predictors through appropriate blocking of progeny trials. Canadian Journal of Forest Research, 1999, 29, 1633-1634.	1.7	3
114	Incomplete block designs for genetic testing: statistical efficiencies of estimating family means. Canadian Journal of Forest Research, 1998, 28, 977-986.	1.7	22
115	Comparison of Breeding Strategies for Purging Inbreeding Depression via Simulation. Conservation Biology, 1998, 12, 856-864.	4.7	34
116	Point estimation and graphical inference of marginal dominance for two viability loci controlling inbreeding depression. Genetical Research, 1997, 70, 143-153.	0.9	14
117	Characterizing Molecular Quantitative Variability for Inbreeding Depression. Plant Species Biology, 1996, 11, 23-31.	1.0	1
118	On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theoretical and Applied Genetics, 1994, 88, 925-932.	3.6	60
119	Marker-based inferences about fecundity genes contributing to inbreeding depression in Mimulus guttatus. Genome, 1994, 37, 1005-1010.	2.0	13
120	Pollen pool heterogeneity in jack pine (Pinus banksiana Lamb.): a problem for estimating outcrossing rates?. Theoretical and Applied Genetics, 1992, 83, 500-508.	3.6	7