
Joerg Huelsken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Niche-Mediated Integrin Signaling Supports Steady-State Hematopoiesis in the Spleen. Journal of Immunology, 2021, 206, 1549-1560.	0.8	5
2	Genomic Instability Profiles at the Single Cell Level in Mouse Colorectal Cancers of Defined Genotypes. Cancers, 2021, 13, 1267.	3.7	5
3	High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Reports, 2021, 35, 109026.	6.4	35
4	The Periostin/Integrin-αv Axis Regulates the Size of Hematopoietic Stem Cell Pool in the Fetal Liver. Stem Cell Reports, 2020, 15, 340-357.	4.8	17
5	Specific Gene Expression in Lgr5+ Stem Cells by Using Cre-Lox Recombination. Methods in Molecular Biology, 2020, 2171, 249-255.	0.9	1
6	γ-Catenin-Dependent Signals Maintain BCR-ABL1+ B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2019, 35, 649-663.e10.	16.8	20
7	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	28.9	1,417
8	A Subset of Cancer-Associated Fibroblasts Determines Therapy Resistance. Cell, 2018, 172, 643-644.	28.9	68
9	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-1² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
10	Enhanced Rate of Acquisition of Point Mutations in Mouse Intestinal Adenomas Compared to Normal Tissue. Cell Reports, 2017, 19, 2185-2192.	6.4	18
11	Cross-Tissue Identification of Somatic Stem and Progenitor Cells Using a Single-Cell RNA-Sequencing Derived Gene Signature. Stem Cells, 2017, 35, 2390-2402.	3.2	6
12	Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell, 2017, 21, 241-255.e6.	11.1	105
13	Phage Selection of Peptide Macrocycles against βâ€Catenin To Interfere with Wnt Signaling. ChemMedChem, 2016, 11, 834-839.	3.2	28
14	Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nature Communications, 2016, 7, 13500.	12.8	56
15	Microfluidic co-culture platform to quantify chemotaxis of primary stem cells. Lab on A Chip, 2016, 16, 1934-1945.	6.0	13
16	Phage Selection of Chemically Stabilized α-Helical Peptide Ligands. ACS Chemical Biology, 2016, 11, 1422-1427.	3.4	63
17	Polycomb Complex PRC1 Preserves Intestinal Stem Cell Identity by Sustaining Wnt/β-Catenin Transcriptional Activity. Cell Stem Cell, 2016, 18, 91-103.	11.1	97
18	HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer. Cancer Cell, 2015, 28, 815-829.	16.8	185

2

JOERG HUELSKEN

#	Article	IF	CITATIONS
19	Complex metastatic niches: already a target for therapy?. Current Opinion in Cell Biology, 2014, 31, 29-38.	5.4	23
20	SPROUTY2 is a \hat{l}^2 -catenin and FOXO3a target gene indicative of poor prognosis in colon cancer. Oncogene, 2014, 33, 1975-1985.	5.9	26
21	The niche under siege: novel targets for metastasis therapy. Journal of Internal Medicine, 2013, 274, 127-136.	6.0	17
22	Metastasis: New insights into organ-specific extravasation and metastatic niches. Experimental Cell Research, 2013, 319, 1604-1610.	2.6	37
23	Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO Journal, 2013, 32, 1903-1916.	7.8	259
24	Lrig1: a new master regulator of epithelial stem cells. EMBO Journal, 2012, 31, 2064-2066.	7.8	20
25	β-catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut, 2012, 61, 1306-1314.	12.1	54
26	β-catenin negatively regulates expression of the prostaglandin transporter PGT in the normal intestinal epithelium and colorectal tumour cells: a role in the chemopreventive efficacy of aspirin?. British Journal of Cancer, 2012, 107, 1514-1517.	6.4	8
27	Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 2012, 481, 85-89.	27.8	1,167
28	Abstract SY28-02: Interactions between cancer stem cells and their niche govern metastatic colonization. Cancer Research, 2012, 72, SY28-02-SY28-02.	0.9	5
29	Neural stem cells are increased after loss of β-catenin, but neural progenitors undergo cell death. European Journal of Neuroscience, 2011, 33, 1366-1375.	2.6	17
30	SOX2 Is an Oncogene Activated by Recurrent 3q26.3 Amplifications in Human Lung Squamous Cell Carcinomas. PLoS ONE, 2010, 5, e8960.	2.5	277
31	Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9777-9782.	7.1	294
32	Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/β-Catenin Pathway In Vivo. PLoS Genetics, 2010, 6, e1000816.	3.5	81
33	Inducibility of Drug-Metabolizing Enzymes by Xenobiotics in Mice with Liver-Specific Knockout of <i>Ctnnb1</i> . Drug Metabolism and Disposition, 2009, 37, 1138-1145.	3.3	77
34	To the Editor. European Journal of Immunology, 2009, 39, 3582-3583.	2.9	8
35	Tissue-specific stem cells: friend or foe?. Cell Research, 2009, 19, 279-281.	12.0	6
36	Reciprocal Requirements for EDA/EDAR/NF-κB and Wnt/β-Catenin Signaling Pathways in Hair Follicle Induction. Developmental Cell, 2009, 17, 49-61.	7.0	310

JOERG HUELSKEN

#	Article	IF	CITATIONS
37	Cancer stem cells: never Wnt away from the niche. Current Opinion in Oncology, 2009, 21, 41-46.	2.4	37
38	Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature, 2008, 452, 650-653.	27.8	564
39	Differential requirement for β-catenin in epithelial and fiber cells during lens development. Developmental Biology, 2008, 321, 420-433.	2.0	70
40	Dependence of reversibility and progression of mouse neuronopathic Gaucher disease on acid β-glucosidase residual activity levels. Molecular Genetics and Metabolism, 2008, 94, 190-203.	1.1	35
41	Long-term, multilineage hematopoiesis occurs in the combined absence of β-catenin and γ-catenin. Blood, 2008, 111, 142-149.	1.4	199
42	β-Catenin Downregulation Is Required for Adaptive Cardiac Remodeling. Circulation Research, 2007, 100, 1353-1362.	4.5	129
43	Distinct requirements for Gab1 in Met and EGF receptor signaling <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15376-15381.	7.1	60
44	Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells. Molecular and Cellular Biology, 2007, 27, 7551-7559.	2.3	533
45	βâ€Catenin regulates Pâ€cadherin expression in mammary basal epithelial cells. FEBS Letters, 2007, 581, 831-836.	2.8	24
46	Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nature Immunology, 2006, 7, 1037-1047.	14.5	370
47	Cooperating pre–T-cell receptor and TCF-1–dependent signals ensure thymocyte survival. Blood, 2005, 106, 1726-1733.	1.4	61
48	Pancreas-Specific Deletion of β-Catenin Reveals Wnt-Dependent and Wnt-Independent Functions during Development. Current Biology, 2005, 15, 1677-1683.	3.9	156
49	Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucleic Acids Research, 2005, 33, e111-e111.	14.5	25
50	Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. Journal of Cell Biology, 2004, 167, 149-160.	5.2	242
51	Deletion of Î ² -catenin impairs T cell development. Nature Immunology, 2003, 4, 1177-1182.	14.5	154
52	β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Developmental Biology, 2003, 258, 406-418.	2.0	442
53	Role of \hat{I}^2 -Catenin in Synaptic Vesicle Localization and Presynaptic Assembly. Neuron, 2003, 40, 719-731.	8.1	288
54	β-Catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development (Cambridge), 2003, 130, 6283-6294.	2.5	152

JOERG HUELSKEN

#	Article	IF	CITATIONS
55	β-Catenin Is Required for Specification of Proximal/Distal Cell Fate during Lung Morphogenesis. Journal of Biological Chemistry, 2003, 278, 40231-40238.	3.4	298
56	Genetic interaction between Wnt/Â-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Genes and Development, 2003, 17, 1963-1968.	5.9	124
57	Selection of Multipotent Stem Cells during Morphogenesis of Small Intestinal Crypts of Lieberkühn Is Perturbed by Stimulation of Lef-1/β-Catenin Signaling. Journal of Biological Chemistry, 2002, 277, 15843-15850.	3.4	68
58	The Wnt signalling pathway. Journal of Cell Science, 2002, 115, 3977-3978.	2.0	448
59	The ankyrin repeat protein Diversin recruits Casein kinase lepsilon to the beta -catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes and Development, 2002, 16, 2073-2084.	5.9	181
60	New aspects of Wnt signaling pathways in higher vertebrates. Current Opinion in Genetics and Development, 2001, 11, 547-553.	3.3	528
61	β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell, 2001, 105, 533-545.	28.9	1,254
62	Requirement for β-Catenin in Anterior-Posterior Axis Formation in Mice. Journal of Cell Biology, 2000, 148, 567-578.	5.2	592