Danny G Marks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667847/publications.pdf Version: 2024-02-01

DANNY C MADES

#	Article	IF	CITATIONS
1	The USDAâ€ARS Experimental Watershed Network: Evolution, Lessons Learned, Societal Benefits, and Moving Forward. Water Resources Research, 2021, 57, e2019WR026473.	4.2	11
2	Automated Water Supply Model (AWSM): Streamlining and standardizing application of a physically based snow model for water resources and reproducible science. Computers and Geosciences, 2020, 144, 104571.	4.2	7
3	Snow cover duration trends observed at sites and predicted by multiple models. Cryosphere, 2020, 14, 4687-4698.	3.9	14
4	Approximating Input Data to a Snowmelt Model Using Weather Research and Forecasting Model Outputs in Lieu of Meteorological Measurements. Journal of Hydrometeorology, 2019, 20, 847-862.	1.9	12
5	On the role of spatial resolution on snow estimates using a processâ€based snow model across a range of climatology and elevation. Hydrological Processes, 2019, 33, 1260-1275.	2.6	6
6	Warming Alters Hydrologic Heterogeneity: Simulated Climate Sensitivity of Hydrologyâ€Based Microrefugia in the Snowâ€ŧoâ€Rain Transition Zone. Water Resources Research, 2019, 55, 2122-2141.	4.2	23
7	Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data. Earth System Science Data, 2019, 11, 865-880.	9.9	36
8	Reynolds Creek Experimental Watershed and Critical Zone Observatory. Vadose Zone Journal, 2018, 17, 1-20.	2.2	29
9	ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 2018, 11, 5027-5049.	3.6	119
10	Direct Insertion of NASA Airborne Snow Observatoryâ€Derived Snow Depth Time Series Into the <i>iSnobal</i> Energy Balance Snow Model. Water Resources Research, 2018, 54, 8045-8063.	4.2	62
11	Role of temporal resolution of meteorological inputs for processâ€based snow modelling. Hydrological Processes, 2018, 32, 2976-2989.	2.6	4
12	31 years of hourly spatially distributed air temperature, humidity, and precipitation amount and phase from Reynolds Critical Zone Observatory. Earth System Science Data, 2018, 10, 1197-1205.	9.9	13
13	Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins. Computers and Geosciences, 2017, 109, 295-304.	4.2	12
14	Insights into mountain precipitation and snowpack from a basinâ€scale wirelessâ€sensor network. Water Resources Research, 2017, 53, 6626-6641.	4.2	32
15	Ecosystem Water Availability in Juniper versus Sagebrush Snow-Dominated Rangelands. Rangeland Ecology and Management, 2017, 70, 116-128.	2.3	49
16	Technical report: The design and evaluation of a basinâ€scale wireless sensor network for mountain hydrology. Water Resources Research, 2017, 53, 4487-4498.	4.2	38
17	Meteorological, snow, streamflow, topographic, and vegetation height data from four western juniper-dominated experimental catchments in southwestern Idaho, USA. Earth System Science Data, 2017, 9, 91-98.	9.9	1
18	The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sensing of Environment, 2016, 184, 139-152.	11.0	313

DANNY G MARKS

#	Article	IF	CITATIONS
19	Snowpack sensitivity to perturbed climate in a cool mid″atitude mountain catchment. Hydrological Processes, 2015, 29, 3925-3940.	2.6	38
20	A unified approach for processâ€based hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 2015, 51, 2515-2542.	4.2	173
21	Bedrock infiltration estimates from a catchment water storage-based modeling approach in the rain snow transition zone. Journal of Hydrology, 2015, 525, 231-248.	5.4	16
22	Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site. Water Resources Research, 2014, 50, 293-305.	4.2	69
23	Snow distribution, melt and surface water inputs to the soil in the mountain rain–snow transition zone. Journal of Hydrology, 2014, 519, 190-204.	5.4	61
24	Soil, snow, weather, and sub-surface storage data from a mountain catchment in the rain–snow transition zone. Earth System Science Data, 2014, 6, 165-173.	9.9	14
25	An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Advances in Water Resources, 2013, 55, 98-110.	3.8	136
26	Simulating wind-affected snow accumulations at catchment to basin scales. Advances in Water Resources, 2013, 55, 64-79.	3.8	96
27	Estimating surface sublimation losses from snowpacks in a mountain catchment using eddy covariance and turbulent transfer calculations. Hydrological Processes, 2012, 26, 3699-3711.	2.6	64
28	A longâ€ŧerm data set for hydrologic modeling in a snowâ€dominated mountain catchment. Water Resources Research, 2011, 47, .	4.2	66
29	A Comparison of Two Open Source LiDAR Surface Classification Algorithms. Remote Sensing, 2011, 3, 638-649.	4.0	48
30	Long-term water balance and conceptual model of a semi-arid mountainous catchment. Journal of Hydrology, 2011, 400, 133-143.	5.4	47
31	Longâ€ŧerm snow, climate, and streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States. Water Resources Research, 2010, 46, .	4.2	122
32	An efficient method for distributing wind speeds over heterogeneous terrain. Hydrological Processes, 2009, 23, 2526-2535.	2.6	53
33	Correction of electronic record for weighing bucket precipitation gauge measurements. Water Resources Research, 2008, 44, .	4.2	20
34	Scaling and parametrization of clear-sky solar radiation over complex topography. Journal of Geophysical Research, 2007, 112, .	3.3	33
35	Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. Journal of Hydrology, 2005, 315, 126-153.	5.4	180
36	A deterministic method to characterize canopy radiative transfer properties. Hydrological Processes, 2004, 18, 3583-3594.	2.6	63

DANNY G MARKS

#	Article	IF	CITATIONS
37	Solar radiation transmission through conifer canopies. Agricultural and Forest Meteorology, 2004, 126, 257-270.	4.8	149
38	A Sensitivity Study of Daytime Net Radiation during Snowmelt to Forest Canopy and Atmospheric Conditions. Journal of Hydrometeorology, 2004, 5, 774-784.	1.9	132
39	Simulation of terrain and forest shelter effects on patterns of snow deposition, snowmelt and runoff over a semi-arid mountain catchment. Hydrological Processes, 2002, 16, 3605-3626.	2.6	70
40	Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrological Processes, 2002, 16, 3585-3603.	2.6	194
41	Thirty-five years of research data collection at the Reynolds Creek Experimental Watershed, Idaho, United States. Water Resources Research, 2001, 37, 2819-2823.	4.2	87
42	A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrological Processes, 1999, 13, 1935-1959.	2.6	263
43	Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models. Hydrological Processes, 1999, 13, 2003-2021.	2.6	47
44	Point simulation of seasonal snow cover dynamics beneath boreal forest canopies. Journal of Geophysical Research, 1999, 104, 27841-27857.	3.3	118
45	The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: a case study of the 1996 Pacific Northwest flood. Hydrological Processes, 1998, 12, 1569-1587.	2.6	300
46	Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research, 1997, 8, 1-20.	1.1	267
47	Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 2. Snow cover energy balance. Water Resources Research, 1992, 28, 3043-3054.	4.2	305
48	A clear-sky longwave radiation model for remote alpine areas. Archiv Für Meteorologie Geophysik Und Bioklimatologie Serie B, 1979, 27, 159-187.	0.8	85