
Cody W Schlenker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8666649/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photochemistry of carbon nitrides and heptazine derivatives. Chemical Communications, 2021, 57, 9330-9353.	4.1	15
2	Charge Trapping Dynamics Revealed in CH ₃ NH ₃ PbI ₃ by Ultrafast Multipulse Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 18834-18840.	3.1	2
3	Ion-Pairing Dynamics Revealed by Kinetically Resolved In Situ FTIR Spectroelectrochemistry during Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 48546-48554.	8.0	7
4	Heavy-Atom-Free Red-to-Yellow Photon Upconversion in a Thiosquaraine Composite. ACS Applied Energy Materials, 2020, 3, 19-28.	5.1	23
5	Photooxidation of water with heptazine-based molecular photocatalysts: Insights from spectroscopy and computational chemistry. Journal of Chemical Physics, 2020, 153, 100902.	3.0	17
6	Intermolecular Hydrogen Bonding Tunes Vibronic Coupling in Heptazine Complexes. Journal of Physical Chemistry B, 2020, 124, 11680-11689.	2.6	7
7	Seeded Growth of Nanoscale Semiconductor Tetrapods: Generality and the Role of Cation Exchange. Chemistry of Materials, 2020, 32, 4774-4784.	6.7	18
8	Control of Excited-State Proton-Coupled Electron Transfer by Ultrafast Pump-Push-Probe Spectroscopy in Heptazine-Phenol Complexes: Implications for Photochemical Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 9151-9160.	3.1	18
9	Molecular Design of Heptazine-Based Photocatalysts: Effect of Substituents on Photocatalytic Efficiency and Photostability. Journal of Physical Chemistry A, 2020, 124, 3698-3710.	2.5	20
10	Germanium Nanowire Battery Electrodes with Engineered Surface-Binder Interactions Exhibit Improved Cycle Life and High Energy Density without Fluorinated Additives. ACS Applied Energy Materials, 2019, 2, 6200-6208.	5.1	14
11	Electromodulation and Transient Absorption Spectroscopy Suggest Conduction Band Electron Lifetime, Electron Trapping Parameters, and CH ₃ NH ₃ PbI ₃ Solar Cell Fill Factor Are Correlated. Journal of Physical Chemistry C, 2019, 123, 18160-18170.	3.1	9
12	Singlet–Triplet Inversion in Heptazine and in Polymeric Carbon Nitrides. Journal of Physical Chemistry A, 2019, 123, 8099-8108.	2.5	87
13	Stark Tuning Rates of Organic Carbonates Used in Electrochemical Energy Storage Devices. Journal of Physical Chemistry C, 2019, 123, 11484-11492.	3.1	8
14	Barrierless Heptazine-Driven Excited State Proton-Coupled Electron Transfer: Implications for Controlling Photochemistry of Carbon Nitrides and Aza-Arenes. Journal of Physical Chemistry C, 2019, 123, 29580-29588.	3.1	21
15	Operando Sum-Frequency Generation Detection of Electrolyte Redox Products at Active Si Nanoparticle Li-Ion Battery Interfaces. Chemistry of Materials, 2018, 30, 1239-1248.	6.7	30
16	Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors. Advanced Optical Materials, 2018, 6, 1701138.	7.3	29
17	Proton-Coupled Electron Transfer from Water to a Model Heptazine-Based Molecular Photocatalyst. Journal of Physical Chemistry Letters, 2018, 9, 6257-6261.	4.6	51
18	Activationless Multiple-Site Concerted Proton–Electron Tunneling. Journal of the American Chemical Society, 2018, 140, 7449-7452.	13.7	24

CODY W SCHLENKER

#	Article	IF	CITATIONS
19	Excited-state Energies Drive Charge-transfer in Organic Semiconductors. Materials and Energy, 2018, , 89-120.	0.1	1
20	Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts. Journal of the American Chemical Society, 2017, 139, 7904-7912.	13.7	194
21	CsPbBr ₃ Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics, 2017, 4, 2281-2289.	6.6	243
22	Kinetic Competition between Charge Separation and Triplet Formation in Small-Molecule Photovoltaic Blends. Journal of Physical Chemistry C, 2017, 121, 26667-26676.	3.1	17
23	Modulation of hybrid organic–perovskite photovoltaic performance by controlling the excited dynamics of fullerenes. Materials Horizons, 2015, 2, 414-419.	12.2	24
24	Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States. Chemistry of Materials, 2015, 27, 6583-6591.	6.7	42
25	Highâ€Dielectric Constant Sideâ€Chain Polymers Show Reduced Nonâ€Geminate Recombination in Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1301857.	19.5	110
26	Size-Dependent Charge Transfer Yields in Conjugated Polymer/Quantum Dot Blends. Journal of Physical Chemistry C, 2014, 118, 5710-5715.	3.1	24
27	Photoinduced Hole Transfer Becomes Suppressed with Diminished Driving Force in Polymerâ€Fullerene Solar Cells While Electron Transfer Remains Active. Advanced Functional Materials, 2013, 23, 1238-1249.	14.9	101
28	The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 2013, 500, 435-439.	27.8	460
29	ITO Interface Modifiers Can Improve <i>V</i> _{OC} in Polymer Solar Cells and Suppress Surface Recombination. Journal of Physical Chemistry Letters, 2013, 4, 4038-4044.	4.6	78
30	Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics. Journal of Physical Chemistry Letters, 2013, 4, 280-284.	4.6	38
31	Charge generation and energy transfer in hybrid polymer/infrared quantum dot solar cells. Energy and Environmental Science, 2013, 6, 769.	30.8	51
32	Polymer Triplet Energy Levels Need Not Limit Photocurrent Collection in Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 19661-19668.	13.7	61
33	Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. Organic Electronics, 2012, 13, 2870-2878.	2.6	82
34	Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons. Journal of Organic Chemistry, 2012, 77, 143-159.	3.2	72
35	Singlet and Triplet Excitation Management in a Bichromophoric Near-Infrared-Phosphorescent BODIPY-Benzoporphyrin Platinum Complex. Journal of the American Chemical Society, 2011, 133, 88-96.	13.7	147
36	Observation of Triplet Exciton Formation in a Platinum-Sensitized Organic Photovoltaic Device. Journal of Physical Chemistry Letters, 2011, 2, 48-54.	4.6	41

CODY W SCHLENKER

#	Article	IF	CITATIONS
37	Current Challenges in Organic Photovoltaic Solar Energy Conversion. Topics in Current Chemistry, 2011, 312, 175-212.	4.0	27
38	The molecular nature of photovoltage losses in organic solar cells. Chemical Communications, 2011, 47, 3702.	4.1	122
39	Cascade Organic Solar Cells. Chemistry of Materials, 2011, 23, 4132-4140.	6.7	82
40	Reciprocal carrier collection in organic photovoltaics. Physical Review B, 2011, 84, .	3.2	8
41	Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano, 2010, 4, 2865-2873.	14.6	1,148
42	Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 2010, 132, 4060-4061.	13.7	318