Hiroyuki Yamakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8665242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Metabolic Flow Enables Large-Scale Purification of Mouse and Human Pluripotent Stem Cell-Derived Cardiomyocytes. Cell Stem Cell, 2013, 12, 127-137.	11.1	860
2	Nongenetic method for purifying stem cell–derived cardiomyocytes. Nature Methods, 2010, 7, 61-66.	19.0	388
3	Induction of human cardiomyocyte-like cells from fibroblasts by defined factors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12667-12672.	7.1	296
4	MiRâ€133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO Journal, 2014, 33, 1565-1581.	7.8	272
5	Induction of Cardiomyocyte-Like Cells in Infarct Hearts by Gene Transfer of Gata4, Mef2c, and Tbx5. Circulation Research, 2012, 111, 1147-1156.	4.5	246
6	A Global In Vivo Drosophila RNAi Screen Identifies NOT3 as a Conserved Regulator of Heart Function. Cell, 2010, 141, 142-153.	28.9	199
7	Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovascular Research, 2012, 95, 419-429.	3.8	171
8	Impact of long-term caloric restriction on cardiac senescence: Caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. Journal of Molecular and Cellular Cardiology, 2011, 50, 117-127.	1.9	150
9	Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Reports, 2015, 5, 1128-1142.	4.8	143
10	Direct InÂVivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. Cell Stem Cell, 2018, 22, 91-103.e5.	11.1	138
11	Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming. Nature Communications, 2019, 10, 674.	12.8	74
12	Soft Matrix Promotes Cardiac Reprogramming via Inhibition of YAP/TAZ and Suppression of Fibroblast Signatures. Stem Cell Reports, 2020, 15, 612-628.	4.8	53
13	Strategies for Heart Regeneration. International Heart Journal, 2015, 56, 1-5.	1.0	26
14	Cardiac regeneration by direct reprogramming in this decade and beyond. Inflammation and Regeneration, 2021, 41, 20.	3.7	22
15	Single-Construct Polycistronic Doxycycline-Inducible Vectors Improve Direct Cardiac Reprogramming and Can Be Used to Identify the Critical Timing of Transgene Expression. International Journal of Molecular Sciences, 2017, 18, 1805.	4.1	20
16	Overexpression of Gata4, Mef2c, and Tbx5 Generates Induced Cardiomyocytes Via Direct Reprogramming and Rare Fusion in the Heart. Circulation, 2021, 143, 2123-2125.	1.6	10
17	Heart regeneration for clinical application update 2016: from induced pluripotent stem cells to direct cardiac reprogramming. Inflammation and Regeneration, 2016, 36, 23.	3.7	5
18	Induction of Cardiomyocyte-like Cells in Infarct Hearts by Gene Transfer of Gata4, Mef2c and Tbx5. Journal of Cardiac Failure, 2012, 18, S146.	1.7	2

#	Article	IF	CITATIONS
19	Comment on: Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Stem Cell Investigation, 2016, 3, 89-89.	3.0	1