
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8663998/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Bimetallic Selenides CoSe ₂ –MoSe ₂ /rGO for Sodium/Potassiumâ€lon Batteries Anode: Insights into the Intercalation and Conversion Mechanism. Energy and Environmental Materials, 2022, 5, 627-636.	12.8	69
2	Rational design heterostructured bimetallic selenides for high capacity and durability sodium/potassium-ion storage. Chemical Engineering Journal, 2022, 430, 133176.	12.7	24
3	Heterojunction-Promoted Sodium Ion Storage of Bimetallic Selenides Encapsulated in a Carbon Sheath with Boosted Ion Diffusion and Stable Structure. ACS Applied Materials & Interfaces, 2022, 14, 6926-6936.	8.0	15
4	Carbonâ€Encapsulated Ni ₃ Se ₄ /CoSe ₂ Heterostructured Nanospheres: Sodium/Potassiumâ€lon Storage Anode with Prominent Electrochemical Properties. Small, 2022, 18, e2107258.	10.0	35
5	Coupling of Metallic VSe ₂ and Conductive Polypyrrole for Boosted Sodium-Ion Storage by Reinforced Conductivity Within and Outside. ACS Nano, 2022, 16, 7772-7782.	14.6	65
6	FeOOH derived urchin-like Fe2O3@C as superior anode for sodium ion storage. Journal of Alloys and Compounds, 2021, 858, 157714.	5.5	9
7	Construction of CoP@C embedded into N/S-co-doped porous carbon sheets for superior lithium and sodium storage. Journal of Colloid and Interface Science, 2021, 582, 969-976.	9.4	42
8	One-step in situ encapsulation of Ge nanoparticles into porous carbon network with enhanced electron/ion conductivity for lithium storage. Rare Metals, 2021, 40, 2432-2439.	7.1	18
9	Heterojunction interfacial promotion of fast and prolonged alkali-ion storage of urchin-like Nb ₂ O ₅ @C nanospheres. Journal of Materials Chemistry A, 2021, 9, 23467-23476.	10.3	13
10	Improved sodium storage properties of nickel sulfide nanoparticles decorated on reduced graphene oxide nanosheets as an advanced anode material. Nanotechnology, 2021, 32, 195406.	2.6	5
11	Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie, 2021, 133, 13145-13151.	2.0	16
12	Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries. Angewandte Chemie - International Edition, 2021, 60, 13035-13041.	13.8	239
13	Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nature Nanotechnology, 2021, 16, 902-910.	31.5	560
14	Sb2S3-Bi2S3 microrods with the combined action of carbon encapsulation and rGO confinement for improving high cycle stability in sodium/potassium storage. Chemical Engineering Journal, 2021, 414, 128787.	12.7	46
15	Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogenâ€Bond Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 18845-18851.	13.8	150
16	Cobalt-molybdenum binary metal sulfide wrapped by reduced graphene oxide for advanced sodium ion anode material. Chemical Physics, 2021, 547, 111191.	1.9	3
17	Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic–Zincophobic Interfacial Layers and Interrupted Hydrogenâ€Bond Electrolytes. Angewandte Chemie, 2021, 133, 18993-18999.	2.0	11
18	Exploration of amorphous hollow FeOOH@C nanosphere on energy storage for sodium ion batteries. International Journal of Hydrogen Energy, 2021, 46, 26457-26465.	7.1	7

#	Article	IF	CITATIONS
19	Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zincâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2104281.	14.9	225
20	Exploring sodium storage mechanism of topological insulator Bi2Te3 nanosheets encapsulated in conductive polymer. Energy Storage Materials, 2021, 41, 255-263.	18.0	44
21	Hierarchical carbon-coated FeP derived from FeOOH with enhanced sodium-storage performance. Surface Innovations, 2021, 9, 285-292.	2.3	1
22	Minimal TiO ₂ Coupled with Conductive Polymer-Stimulated Synergistic Effect on Fast and Reversible Sodium-Ion Storage for Bismuth Sulfide. ACS Applied Materials & Interfaces, 2021, 13, 55051-55059.	8.0	7
23	Advanced sodium storage properties of a porous nitrogen-doped carbon with a NiO/Cu/Cu ₂ 0 hetero-interface derived from bimetal–organic frameworks. Chemical Communications, 2020, 56, 818-821.	4.1	9
24	Construction of uniform SnS2/ZnS heterostructure nanosheets embedded in graphene for advanced lithium-ion batteries. Journal of Alloys and Compounds, 2020, 820, 153147.	5.5	21
25	Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy and Environmental Science, 2020, 13, 3917-3949.	30.8	480
26	Heterogeneous Structured Bi ₂ S ₃ /MoS ₂ @NC Nanoclusters: Exploring the Superior Rate Performance in Sodium/Potassium Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 42902-42910.	8.0	75
27	Solvation Structure Design for Aqueous Zn Metal Batteries. Journal of the American Chemical Society, 2020, 142, 21404-21409.	13.7	680
28	Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries. Journal of Alloys and Compounds, 2020, 838, 155394.	5.5	21
29	An Inâ€Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Znâ€lon Batteries. Advanced Materials, 2020, 32, e2003021.	21.0	707
30	Hydrophobic Organicâ€Electrolyteâ€Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie, 2020, 132, 19454-19458.	2.0	30
31	Hydrophobic Organicâ€Electrolyteâ€Protected Zinc Anodes for Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2020, 59, 19292-19296.	13.8	287
32	Hollow CoS2@C nanocubes for high-performance sodium storage. Applied Surface Science, 2020, 519, 146268.	6.1	40
33	Recent Developments in Alloyingâ€ŧype Anode Materials for Potassiumâ€lon Batteries. Chemistry - an Asian Journal, 2020, 15, 1648-1659.	3.3	14
34	Anchoring ternary CoNiSn alloys nanoparticles on hollow architectured SnO2 for exceptional lithium storage performance. Journal of Power Sources, 2020, 450, 227626.	7.8	11
35	Engineering Unique Ball-In-Ball Structured (Ni _{0.33} Co _{0.67}) ₉ S ₈ @C Nanospheres for Advanced Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 27805-27812.	8.0	22
36	Capacitive behavior of glucose-derived porous activated carbon with different morphologies. Journal of Alloys and Compounds, 2019, 805, 426-435.	5.5	28

#	Article	IF	CITATIONS
37	One-Step In Situ Preparation of Polymeric Selenium Sulfide Composite as a Cathode Material for Enhanced Sodium/Potassium Storage. ACS Applied Materials & Interfaces, 2019, 11, 29807-29813.	8.0	36
38	Fabrication of Core‧hell Ni ₂ P@N, Pâ^'Coâ€Đoped Carbon/Reduced Graphene Oxide Composite as Anode Material for Lithium―and Sodiumâ€ŀon Batteries. ChemElectroChem, 2019, 6, 5492-5498.	3.4	15
39	A layered Bi ₂ Te ₃ nanoplates/graphene composite with high gravimetric and volumetric performance for Na-ion storage. Sustainable Energy and Fuels, 2019, 3, 3163-3171.	4.9	23
40	Heterostructured SnS/TiO ₂ @C hollow nanospheres for superior lithium and sodium storage. Nanoscale, 2019, 11, 12846-12852.	5.6	52
41	SnS2@C Hollow Nanospheres with Robust Structural Stability as High-Performance Anodes for Sodium Ion Batteries. Nano-Micro Letters, 2019, 11, 14.	27.0	80
42	Constructing Hollow Ni _{0.2} Co _{0.8} S@rGO Composites at Low Temperature Conditions as Anode Material for Lithiumâ€ion batteries. ChemElectroChem, 2019, 6, 2331-2337.	3.4	8
43	Hierarchical flower-like structures composed of cross-shaped vanadium dioxide nanobelts as superior performance anode for lithium and sodium ions batteries. Applied Surface Science, 2019, 480, 882-887.	6.1	31
44	3D architectures with Co ₂ (OH) ₂ CO ₃ nanowires wrapped by reduced graphene oxide as superior rate anode materials for Li-ion batteries. Nanoscale, 2019, 11, 21180-21187.	5.6	25
45	Uniformly distributed TiO2 nanorods on reduced graphene oxide composites as anode material for high rate lithium ion batteries. Journal of Alloys and Compounds, 2019, 771, 885-891.	5.5	45
46	Embedding ultrafine ZnSnO ₃ nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries. Nanotechnology, 2018, 29, 195401.	2.6	11
47	Electrospinning preparation of a graphene oxide nanohybrid protonâ€exchange membrane for fuel cells. Journal of Applied Polymer Science, 2018, 135, 46443.	2.6	18
48	A Coordination Strategy for Ti _{<i>x</i>} Sn _{1–<i>x</i>} O ₂ Solid Solution Nanocubes Wrapped by Reduced Graphene Oxide as a Candidate for Lithiumâ€lonâ€Battery Anodes. ChemElectroChem, 2018, 5, 3961-3967.	3.4	9
49	Two-Dimensional NiSe ₂ /N-Rich Carbon Nanocomposites Derived from Ni-Hexamine Frameworks for Superb Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 34193-34201.	8.0	110
50	Construction of 3D architectures with Ni(HCO ₃) ₂ nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chemical Science, 2018, 9, 8682-8691.	7.4	34
51	Graphene-Loaded Bi ₂ Se ₃ : A Conversion–Alloying-type Anode Material for Ultrafast Gravimetric and Volumetric Na Storage. ACS Applied Materials & Interfaces, 2018, 10, 30379-30387.	8.0	83
52	Coordination Polymers-Derived Three-Dimensional Hierarchical CoFe ₂ O ₄ Hollow Spheres as High-Performance Lithium Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 28679-28685.	8.0	60
53	Achieving Ultrafast and Stable Na-Ion Storage in FeSe ₂ Nanorods/Graphene Anodes by Controlling the Surface Oxide. ACS Applied Materials & Interfaces, 2018, 10, 22841-22850.	8.0	69
54	Hollow ZnSnO3 cubes@carbon/reduced graphene oxide ternary composite as anode of lithium ion batteries with enhanced electrochemical performance. Ceramics International, 2017, 43, 11556-11562.	4.8	23

#	Article	IF	CITATIONS
55	Fabrication of Novel Ternary Three-Dimensional RuO ₂ /Graphitic-C ₃ N ₄ @reduced Graphene Oxide Aerogel Composites for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 4982-4991.	6.7	85
56	Unique Structural Design and Strategies for Germaniumâ€Based Anode Materials Toward Enhanced Lithium Storage. Advanced Energy Materials, 2017, 7, 1700488.	19.5	103
57	A self-assembled 3D urchin-like Ti _{0.8} Sn _{0.2} O ₂ –rGO hybrid nanostructure as an anode material for high-rate and long cycle life Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 8087-8094.	10.3	26
58	3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage. Scientific Reports, 2017, 7, 4886.	3.3	82
59	Ultrathin Cobaltosic Oxide Nanosheets as an Effective Sulfur Encapsulation Matrix with Strong Affinity Toward Polysulfides. ACS Applied Materials & Interfaces, 2017, 9, 4320-4325.	8.0	59
60	Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 203, 84-90.	5.2	53
61	A New Strategy for Achieving a High Performance Anode for Lithium Ion Batteries—Encapsulating Germanium Nanoparticles in Carbon Nanoboxes. Advanced Energy Materials, 2016, 6, 1501666.	19.5	111
62	Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium Ion Battery. Scientific Reports, 2015, 5, 11326.	3.3	21
63	Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 978-981.	10.3	75
64	Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium–Cobalt Oxide Lithium-Ion Battery. ACS Nano, 2015, 9, 1858-1867.	14.6	148
65	V 2 O 5 /Mesoporous Carbon Composite as a Cathode Material for Lithium-ion Batteries. Electrochimica Acta, 2015, 173, 172-177.	5.2	36
66	SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014, 7, 1466-1476.	10.4	108
67	TiO 2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries. Energy, 2014, 75, 597-602.	8.8	49
68	Highly Reversible and Large Lithium Storage in Mesoporous Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon Framework. Advanced Materials, 2014, 26, 6749-6755.	21.0	260
69	Hierarchical Porous Li2Mg(NH)2@C Nanowires with Long Cycle Life Towards Stable Hydrogen Storage. Scientific Reports, 2014, 4, 6599.	3.3	16
70	TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	32
71	A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 14115.	10.3	80
72	Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013, 3, 5003.	3.6	44

#	Article	IF	CITATIONS
73	Carbon oated Li ₃ N Nanofibers for Advanced Hydrogen Storage. Advanced Materials, 2013, 25, 6238-6244.	21.0	66
74	Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction. Physical Chemistry Chemical Physics, 2012, 14, 3634.	2.8	40
75	Enhanced Electrochemical Performance of MoS ₂ for Lithium Ion Batteries by Simple Chemical Lithiation. Journal of the Chinese Chemical Society, 2012, 59, 1196-1200.	1.4	8
76	Microwaveâ€assisted Synthesis of Flowerâ€like Structure ϵâ€MnO ₂ as Cathode for Lithium Ion Batteries. Journal of the Chinese Chemical Society, 2012, 59, 1211-1215.	1.4	21
77	Preparation and electrochemical performance of LiFePO4â^'x F x /C nanorods by room-temperature solid-state reaction and microwave heating. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	7
78	Preparation and characterization of Ag/C nanocables-modified nanosized C-LiFePO4. Journal of Nanoparticle Research, 2011, 13, 4815-4820.	1.9	6
79	Synthesis and electrochemical properties of nanosized carbon-coated Li1â~'3x La x FePO4 composites. Journal of Solid State Electrochemistry, 2010, 14, 889-895.	2.5	18
80	Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3, 101-105.	31.5	8,393