
Peter Hufnagl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	7.4	2,003
2	Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Computerized Medical Imaging and Graphics, 2017, 61, 2-13.	5.8	234
3	Detection and Segmentation of Cell Nuclei in Virtual Microscopy Images: A Minimum-Model Approach. Scientific Reports, 2012, 2, 503.	3.3	188
4	Necrosis in anti-SRP ⁺ and anti-HMGCR ⁺ myopathies. Neurology, 2018, 90, e507-e517.	1.1	132
5	Telestroke Ambulances in Prehospital Stroke Management. Stroke, 2012, 43, 2086-2090.	2.0	103
6	Dermatomyositis With or Without Anti-Melanoma Differentiation-Associated Gene 5 Antibodies. American Journal of Pathology, 2016, 186, 691-700.	3.8	78
7	The UICC Telepathology Consultation Center. Cancer, 2000, 89, 187-191.	4.1	64
8	Integration and acceleration of virtual microscopy as the key to successful implementation into the routine diagnostic process. Diagnostic Pathology, 2009, 4, 3.	2.0	47
9	CognitionMaster: an object-based image analysis framework. Diagnostic Pathology, 2013, 8, 34.	2.0	45
10	Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology). Diagnostic Pathology, 2008, 3, 17.	2.0	44
11	Cancer beyond organ and tissue specificity: Nextâ€generationâ€sequencing gene mutation data reveal complex genetic similarities across major cancers. International Journal of Cancer, 2014, 135, 2362-2369.	5.1	36
12	The diagnostic path, a useful visualisation tool in virtual microscopy. Diagnostic Pathology, 2006, 1, 40.	2.0	33
13	Distributed computing in image analysis using open source frameworks and application to image sharpness assessment of histological whole slide images. Diagnostic Pathology, 2011, 6, S16.	2.0	32
14	Teleconsultation in diagnostic pathology: experience from Iran and Germany with the use of two European telepathology servers. Journal of Telemedicine and Telecare, 2004, 10, 99-103.	2.7	30
15	Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics. Diagnostic Pathology, 2012, 7, 134.	2.0	24
16	Artificial Intelligence in Pathology. Deutsches Ärzteblatt International, 2021, 118, 194-204.	0.9	23
17	Artificial Intelligence in Pathology: From Prototype to Product. Journal of Pathology Informatics, 2021, 12, 13.	1.7	20
18	Reproducibility of Her2/neu scoring in gastric cancer and assessment of the 10% cutâ€off rule. Cancer Medicine, 2015, 4, 235-244.	2.8	17

Peter Hufnagl

#	Article	IF	CITATIONS
19	Long-term analysis to objectify the tumour grading by means of automated microscopic image analysis of the nucleolar organizer regions (AgNORs) in the case of breast carcinoma. Diagnostic Pathology, 2013, 8, 56.	2.0	16
20	Improvement of breast cancer prognostication using cell kinetic-based silver-stainable nucleolar organizer region quantification of the MIB-1 positive tumor cell compartment. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2001, 438, 478-484.	2.8	11
21	Computational morphogenesis – Embryogenesis, cancer research and digital pathology. BioSystems, 2018, 169-170, 40-54.	2.0	11
22	A Comparative Study of Cell Nuclei Attributed Relational Graphs for Knowledge Description and Categorization in Histopathological Gastric Cancer Whole Slide Images. , 2017, , .		9
23	Computer-assisted image analysis of nucleolar organizer regions (NORs): A pilot study of astrocytomas and glioblastomas. Acta Histochemica, 1991, 90, 189-196.	1.8	8
24	Appearance-based necrosis detection using textural features and SVM with discriminative thresholding in histopathological whole slide images. , 2015, , .		8
25	Computational analysis reveals histotype-dependent molecular profile and actionable mutation effects across cancers. Genome Medicine, 2018, 10, 83.	8.2	8
26	Curious Containers: A framework for computational reproducibility in life sciences with support for Deep Learning applications. Future Generation Computer Systems, 2020, 112, 209-227.	7.5	8
27	Fetal Autopsy: The Most Important Contribution of Pathology in a Center for Perinatal Medicine. Fetal Diagnosis and Therapy, 2001, 16, 384-393.	1.4	7
28	Computational augmentation of neoplastic endometrial glands in digital pathology displays. Journal of Pathology, 2021, 253, 258-267.	4.5	6
29	Diagnosis of Congenital Heart Malformations – Possibilities for the Employment of Telepathology. Analytical Cellular Pathology, 2000, 21, 229-235.	2.1	5
30	Different Proliferation Patterns in Breast Cancer: AgNOR Measurements in ER-Negative and ER-Positive Tumor Cells. Analytical Cellular Pathology, 2000, 20, 155-162.	2.1	5
31	Assessment of scalability and performance of the record linkage tool E-PIX® in managing multi-million patients in research projects at a large university hospital in Germany. Journal of Translational Medicine, 2020, 18, 86.	4.4	5
32	A general framework dedicated to computational morphogenesis Part I – Constitutive equations. BioSystems, 2018, 173, 298-313.	2.0	4
33	Cell nuclei attributed relational graphs for efficient representation and classification of gastric cancer in digital histopathology. Proceedings of SPIE, 2016, , .	0.8	3
34	EMPAIA App interface: An open and vendor-neutral interface for AI applications in pathology. Computer Methods and Programs in Biomedicine, 2022, 215, 106596.	4.7	3
35	Technique and Feasibility of a Dual Staining Method for Estrogen Receptors and AgNORs. Analytical Cellular Pathology, 2000, 20, 151-154.	2.1	2
36	A general framework dedicated to computational morphogenesis Part II – Knowledge representation and architecture. BioSystems, 2018, 173, 314-334.	2.0	2

Peter Hufnagl

#	Article	IF	CITATIONS
37	A Gray-box Testing Method for Divide&Conquer in Image Processing. , 2019, , .		1
38	Preface. Computerized Medical Imaging and Graphics, 2017, 61, 1.	5.8	0
39	On Divide&Conquer in Image Processing of Data Monster. Big Data Research, 2021, 25, 100214.	4.2	О
40	Gestenbasierte Interaktionsmethoden für die virtuelle Mikroskopie. Informatik Aktuell, 2015, , 431-436.	0.6	0
41	OBDEX – Open Block Data Exchange System. Lecture Notes in Computer Science, 2020, , 118-135.	1.3	Ο
42	Higher Education Teaching Material on Machine Learning in the Domain of Digital Pathology. Lecture Notes in Computer Science, 2020, , 155-174.	1.3	0
43	Extension of the Identity Management System Mainzelliste to Reduce Runtimes for Patient Registration in Large Datasets. Lecture Notes in Computer Science, 2020, , 228-245.	1.3	Ο