Christopher A Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8661201/publications.pdf

Version: 2024-02-01

169 papers 22,575 citations

72 h-index 9103

g-index

178 all docs

178 docs citations

178 times ranked

 $\begin{array}{c} 28121 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Enterocyte–innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunology, 2022, 15, 362-372.	6.0	26
2	PD-L1–PD-1 interactions limit effector regulatory T cell populations at homeostasis and during infection. Nature Immunology, 2022, 23, 743-756.	14.5	47
3	Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nature Immunology, 2022, 23, 947-959.	14.5	37
4	A genetic screen identifies a protective type III interferon response to Cryptosporidium that requires TLR3 dependent recognition. PLoS Pathogens, 2022, 18, e1010003.	4.7	16
5	Impact of secondary TCR engagement on the heterogeneity of pathogen-specific CD8+ T cell response during acute and chronic toxoplasmosis. PLoS Pathogens, 2022, 18, e1010296.	4.7	9
6	Single-cell analysis highlights differences in druggable pathways underlying adaptive or fibrotic kidney regeneration. Nature Communications, 2022, 13, .	12.8	54
7	IL-33 promotes innate lymphoid cell-dependent IFN- \hat{l}^3 production required for innate immunity to Toxoplasma gondii. ELife, 2021, 10, .	6.0	22
8	Is IL-6 a key cytokine target for therapy in COVID-19?. Nature Reviews Immunology, 2021, 21, 337-339.	22.7	102
9	Limited Impact of the Inhibitory Receptor TIGIT on NK and T Cell Responses during <i>Toxoplasma gondii</i> Infection. ImmunoHorizons, 2021, 5, 384-394.	1.8	4
10	Long live the king: Toxoplasma gondii nucleomodulin inhibits necroptotic cell death. Cell Host and Microbe, 2021, 29, 1165-1166.	11.0	4
11	B cells promote CD8 TÂcell primary and memory responses to subunit vaccines. Cell Reports, 2021, 36, 109591.	6.4	21
12	Gut epithelial IL-27 confers intestinal immunity through the induction of intraepithelial lymphocytes. Journal of Experimental Medicine, 2021, 218, .	8.5	16
13	The intestinal parasite <i>Cryptosporidium</i> is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
14	DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Science Translational Medicine, 2021, 13, eabj1008.	12.4	90
15	Lessons from <i>Toxoplasma</i> : Host responses that mediate parasite control and the microbial effectors that subvert them. Journal of Experimental Medicine, 2021, 218, .	8.5	44
16	The <i>Toxoplasma gondii</i> virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. Journal of Experimental Medicine, 2020, 217, .	8.5	43
17	Loss of IL-27Rα Results in Enhanced Tubulointerstitial Fibrosis Associated with Elevated Th17 Responses. Journal of Immunology, 2020, 205, 377-386.	0.8	12
18	The role of macrophages in protective and pathological responses to <i>Toxoplasma gondii</i> Parasite Immunology, 2020, 42, e12712.	1.5	30

#	Article	IF	Citations
19	COVID-19–associated Acute Respiratory Distress Syndrome Clarified: A Vascular Endotype?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 750-753.	5.6	36
20	Cytokine Storms: Understanding COVID-19. Immunity, 2020, 53, 19-25.	14.3	514
21	Innate immunity to Toxoplasma gondii. , 2020, , 1075-1105.		2
22	βâ€synuclein at the "synapse―of encephalitis and neurodegeneration in multiple sclerosis?. Immunology and Cell Biology, 2019, 97, 523-525.	2.3	1
23	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
24	Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiome, 2019, 7, 126.	11.1	108
25	Impact of Interleukin-27p28 on T and B Cell Responses during Toxoplasmosis. Infection and Immunity, 2019, 87, .	2.2	13
26	A Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into Host Protective Immunity. Cell Host and Microbe, 2019, 26, 135-146.e5.	11.0	72
27	Infection-Induced Intestinal Dysbiosis Is Mediated by Macrophage Activation and Nitrate Production. MBio, 2019, 10, .	4.1	49
28	Caspase-8 promotes c-Rel–dependent inflammatory cytokine expression and resistance against <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11926-11935.	7.1	42
29	The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity, 2019, 50, 851-870.	14.3	298
30	The evolving role of T-bet in resistance to infection. Nature Reviews Immunology, 2019, 19, 398-410.	22.7	55
31	IL-27 and TCR Stimulation Promote T Cell Expression of Multiple Inhibitory Receptors. ImmunoHorizons, 2019, 3, 13-25.	1.8	66
32	Cytokine- and TCR-Mediated Regulation of T Cell Expression of Ly6C and Sca-1. Journal of Immunology, 2018, 200, 1761-1770.	0.8	57
33	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .	11.9	44
34	Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. European Journal of Immunology, 2018, 48, 1607-1620.	2.9	31
35	T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow. Cell Reports, 2017, 18, 1906-1916.	6.4	95
36	CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection. Journal of Immunology, 2017, 198, 4054-4061.	0.8	29

#	Article	IF	CITATIONS
37	Protective and Pathological Immunity during Central Nervous System Infections. Immunity, 2017, 46, 891-909.	14.3	123
38	Guidelines for the use of flow cytometry and cell sorting in immunological studies < sup>* < /sup>. European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
39	IL-27 Limits Type 2 Immunopathology Following Parainfluenza Virus Infection. PLoS Pathogens, 2017, 13, e1006173.	4.7	21
40	Toxoplasma gondii: Immune Protection and Evasion., 2016,, 125-132.		0
41	Spontaneous partial loss of the OT-I transgene. Nature Immunology, 2016, 17, 471-471.	14.5	7
42	Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nature Immunology, 2016, 17, 626-635.	14.5	357
43	<i>Leishmania major</i> Infection–Induced VEGF-A/VEGFR-2 Signaling Promotes Lymphangiogenesis That Controls Disease. Journal of Immunology, 2016, 197, 1823-1831.	0.8	27
44	Cutting Edge: IL-4, IL-21, and IFN- \hat{l}^3 Interact To Govern T-bet and CD11c Expression in TLR-Activated B Cells. Journal of Immunology, 2016, 197, 1023-1028.	0.8	183
45	Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system. Nature Microbiology, 2016, 1, 16001.	13.3	160
46	STAT1 Signaling in Astrocytes Is Essential for Control of Infection in the Central Nervous System. MBio, 2016, 7, .	4.1	57
47	The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii. PLoS Biology, 2015, 13, e1002200.	5.6	25
48	The Group 3 Innate Lymphoid Cell Defect in Aryl Hydrocarbon Receptor Deficient Mice Is Associated with T Cell Hyperactivation during Intestinal Infection. PLoS ONE, 2015, 10, e0128335.	2.5	37
49	Diverse Roles for T-bet in the Effector Responses Required for Resistance to Infection. Journal of Immunology, 2015, 194, 1131-1140.	0.8	53
50	Immune-mediated viral clearance from the CNS without collateral damage. Journal of Experimental Medicine, 2015, 212, 1141-1142.	8. 5	3
51	IFN \hat{I}^3 Signaling Endows DCs with the Capacity to Control Type I Inflammation during Parasitic Infection through Promoting T-bet+ Regulatory T Cells. PLoS Pathogens, 2015, 11, e1004635.	4.7	25
52	Heterogeneous CD8+ T Cell Migration in the Lymph Node in the Absence of Inflammation Revealed by Quantitative Migration Analysis. PLoS Computational Biology, 2015, 11, e1004058.	3.2	55
53	IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015, 16, 448-457.	14.5	1,825
54	Editorial overview: Cytokines: New roles for old friends!. Current Opinion in Immunology, 2015, 34, ix-x.	5 . 5	0

#	Article	IF	CITATIONS
55	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	14.3	137
56	The Immunobiology of Interleukin-27. Annual Review of Immunology, 2015, 33, 417-443.	21.8	358
57	Flt3 Ligand Is Essential for Survival and Protective Immune Responses during Toxoplasmosis. Journal of Immunology, 2015, 195, 4369-4377.	0.8	15
58	IL-27 shakes up the establishment of ectopic lymphoid structures. Journal of Experimental Medicine, 2015, 212, 1757-1757.	8.5	1
59	Simvastatin Prevents and Reverses Depigmentation in a Mouse Model of Vitiligo. Journal of Investigative Dermatology, 2015, 135, 1080-1088.	0.7	79
60	Combination of Anti-CD123 and Anti-CD19 Chimeric Antigen Receptor T Cells for the Treatment and Prevention of Antigen-Loss Relapses Occurring after CD19-Targeted Immunotherapies. Blood, 2015, 126, 2523-2523.	1.4	7
61	Differential Induction of TLR3-Dependent Innate Immune Signaling by Closely Related Parasite Species. PLoS ONE, 2014, 9, e88398.	2.5	57
62	Innate Immunity to Parasitic Infections. , 2014, , 225-236.		0
63	Timed Action of IL-27 Protects from Immunopathology while Preserving Defense in Influenza. PLoS Pathogens, 2014, 10, e1004110.	4.7	62
64	Parasite Fate and Involvement of Infected Cells in the Induction of CD4+ and CD8+ T Cell Responses to Toxoplasma gondii. PLoS Pathogens, 2014, 10, e1004047.	4.7	86
65	ILâ€30 (IL27p28) attenuates liver fibrosis through inducing NKG2Dâ€rae1 interaction between NKT and activated hepatic stellate cells in mice. Hepatology, 2014, 60, 2027-2039.	7.3	105
66	Innate Immunity to Toxoplasma gondii. , 2014, , 797-817.		0
67	Infection-Induced Changes in Hematopoiesis. Journal of Immunology, 2014, 192, 27-33.	0.8	96
68	Contractile Forces Sustain and Polarize Hematopoiesis from Stem and Progenitor Cells. Cell Stem Cell, 2014, 14, 81-93.	11.1	114
69	The Aryl Hydrocarbon Receptor Promotes IL-10 Production by NK Cells. Journal of Immunology, 2014, 192, 1661-1670.	0.8	92
70	Use of Transgenic Parasites and Host Reporters To Dissect Events That Promote Interleukin-12 Production during Toxoplasmosis. Infection and Immunity, 2014, 82, 4056-4067.	2.2	31
71	Immune Cell Trafficking in the Central Nervous System. , 2014, , 29-45.		2
72	Disruption of TgPHIL1 Alters Specific Parameters of Toxoplasma gondii Motility Measured in a Quantitative, Three-Dimensional Live Motility Assay. PLoS ONE, 2014, 9, e85763.	2.5	64

#	Article	IF	Citations
73	Replication and Distribution of Toxoplasma gondii in the Small Intestine after Oral Infection with Tissue Cysts. Infection and Immunity, 2013, 81, 1635-1643.	2.2	69
74	Toxoplasma gondii Rhoptry 16 Kinase Promotes Host Resistance to Oral Infection and Intestinal Inflammation Only in the Context of the Dense Granule Protein GRA15. Infection and Immunity, 2013, 81, 2156-2167.	2.2	90
75	IL-27 Receptor Signalling Restricts the Formation of Pathogenic, Terminally Differentiated Th1 Cells during Malaria Infection by Repressing IL-12 Dependent Signals. PLoS Pathogens, 2013, 9, e1003293.	4.7	53
76	IL-27 Receptor Signaling Regulates CD4+ T Cell Chemotactic Responses during Infection. Journal of Immunology, 2013, 190, 4553-4561.	0.8	26
77	IL-21 Is Required for Optimal Antibody Production and T Cell Responses during Chronic Toxoplasma gondii Infection. PLoS ONE, 2013, 8, e62889.	2.5	32
78	Toxoplasma Co-opts Host Cells It Does Not Invade. PLoS Pathogens, 2012, 8, e1002825.	4.7	138
79	Infection with Toxoplasma gondii Alters Lymphotoxin Expression Associated with Changes in Splenic Architecture. Infection and Immunity, 2012, 80, 3602-3610.	2.2	38
80	Pivotal Advance: Peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. Journal of Leukocyte Biology, 2012, 91, 525-536.	3.3	183
81	Cutting Edge: Suppression of GM-CSF Expression in Murine and Human T Cells by IL-27. Journal of Immunology, 2012, 189, 2079-2083.	0.8	47
82	Interleukin-27: Balancing Protective and Pathological Immunity. Immunity, 2012, 37, 960-969.	14.3	231
83	The Cytokines Interleukin 27 and Interferon- \hat{l}^3 Promote Distinct Treg Cell Populations Required to Limit Infection-Induced Pathology. Immunity, 2012, 37, 511-523.	14.3	340
84	Immune response and immunopathology during toxoplasmosis. Seminars in Immunopathology, 2012, 34, 793-813.	6.1	288
85	Interleukin-27 Priming of T Cells Controls IL-17 Production In trans via Induction of the Ligand PD-L1. Immunity, 2012, 36, 1017-1030.	14.3	229
86	New directions in the basic and translational biology of interleukin-27. Trends in Immunology, 2012, 33, 91-97.	6.8	101
87	The Immunobiology of IL-27. Advances in Immunology, 2012, 115, 1-44.	2.2	107
88	Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nature Reviews Microbiology, 2012, 10, 766-778.	28.6	470
89	The composition and signaling of the IL-35 receptor are unconventional. Nature Immunology, 2012, 13, 290-299.	14.5	371
90	Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature, 2012, 486, 545-548.	27.8	483

#	Article	IF	Citations
91	Toxoplasma Polymorphic Effectors Determine Macrophage Polarization and Intestinal Inflammation. Cell Host and Microbe, 2011, 9, 472-483.	11.0	238
92	A Critical Role for SOCS3 in Innate Resistance to Toxoplasma gondii. Cell Host and Microbe, 2011, 10, 224-236.	11.0	69
93	CXCL10 Is Required to Maintain T-Cell Populations and to Control Parasite Replication during Chronic Ocular Toxoplasmosis., 2011, 52, 389.		65
94	Subcellular Antigen Location Influences T-Cell Activation during Acute Infection with Toxoplasma gondii. PLoS ONE, 2011, 6, e22936.	2.5	44
95	A Role for IL-27 in Limiting T Regulatory Cell Populations. Journal of Immunology, 2011, 187, 266-273.	0.8	93
96	IL-6 Mediates the Susceptibility of Glycoprotein 130 Hypermorphs to <i>Toxoplasma gondii</i> . Journal of Immunology, 2011, 187, 350-360.	0.8	36
97	Analysis of Behavior and Trafficking of Dendritic Cells within the Brain during Toxoplasmic Encephalitis. PLoS Pathogens, 2011, 7, e1002246.	4.7	61
98	Regulation of CD8+ T cell responses to infection with parasitic protozoa. Experimental Parasitology, 2010, 126, 318-325.	1.2	86
99	A role for IL-27p28 as an antagonist of gp130-mediated signaling. Nature Immunology, 2010, 11, 1119-1126.	14.5	168
100	Essential Role for IL-27 Receptor Signaling in Prevention of Th1-Mediated Immunopathology during Malaria Infection. Journal of Immunology, 2010, 185, 2482-2492.	0.8	108
101	Role of the NF-κB transcription factor c-Rel in the generation of CD8+ T-cell responses to Toxoplasma gondii. International Immunology, 2010, 22, 851-861.	4.0	15
102	Advances in imaging the innate and adaptive immune response to <i>Toxoplasma gondii</i> . Future Microbiology, 2010, 5, 1321-1328.	2.0	14
103	Virulence of <i>Toxoplasma gondii</i> Is Associated with Distinct Dendritic Cell Responses and Reduced Numbers of Activated CD8+ T Cells. Journal of Immunology, 2010, 185, 1502-1512.	0.8	46
104	gp130 at the nexus of inflammation, autoimmunity, and cancer. Journal of Leukocyte Biology, 2010, 88, 1145-1156.	3.3	203
105	Trafficking of immune cells in the central nervous system. Journal of Clinical Investigation, 2010, 120, 1368-1379.	8.2	426
106	Advances in understanding immunity to Toxoplasma gondii. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 201-210.	1.6	39
107	IL-27 Blocks RORc Expression to Inhibit Lineage Commitment of Th17 Cells. Journal of Immunology, 2009, 182, 5748-5756.	0.8	302
108	Kinetics and Phenotype of Vaccine-Induced CD8 ⁺ T-Cell Responses to <i>Toxoplasma gondii</i> . Infection and Immunity, 2009, 77, 3894-3901.	2.2	60

#	Article	IF	CITATIONS
109	Dynamic Imaging of CD8+ T Cells and Dendritic Cells during Infection with Toxoplasma gondii. PLoS Pathogens, 2009, 5, e1000505.	4.7	107
110	IL-27 Regulates Homeostasis of the Intestinal CD4+ Effector T Cell Pool and Limits Intestinal Inflammation in a Murine Model of Colitis. Journal of Immunology, 2009, 183, 2037-2044.	0.8	68
111	IL-27 Regulates IL-10 and IL-17 from CD4+ Cells in Nonhealing <i>Leishmania major</i> Infection. Journal of Immunology, 2009, 183, 4619-4627.	0.8	122
112	The Foxo and the hound: chasing the in vivo regulation of T cell populations during infection. Nature Immunology, 2009, 10, 457-458.	14.5	6
113	Behavior of Parasite-Specific Effector CD8+ T Cells in the Brain and Visualization of a Kinesis-Associated System of Reticular Fibers. Immunity, 2009, 30, 300-311.	14.3	184
114	Decrease of Foxp3+ Treg Cell Number and Acquisition of Effector Cell Phenotype during Lethal Infection. Immunity, 2009, 31, 772-786.	14.3	546
115	New paradigms in inflammation: where to next?. Immunological Reviews, 2008, 226, 6-9.	6.0	2
116	Anomalous Type 17 Response to Viral Infection by CD8 ⁺ T Cells Lacking T-bet and Eomesodermin. Science, 2008, 321, 408-411.	12.6	339
117	Neutrophil Soldiers or Trojan Horses?. Science, 2008, 321, 917-918.	12.6	45
118	Plasmacytoid Dendritic Cells Are Activated by <i>Toxoplasma gondii</i> to Present Antigen and Produce Cytokines. Journal of Immunology, 2008, 180, 6229-6236.	0.8	97
119	Immunodominance and Recognition of Intracellular Pathogens. Journal of Infectious Diseases, 2008, 198, 1579-1581.	4.0	10
120	T cell expression of MyD88 is required for resistance to <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3855-3860.	7.1	96
121	IL-27R deficiency delays the onset of colitis and protects from helminth-induced pathology in a model of chronic IBD. International Immunology, 2008, 20, 739-752.	4.0	47
122	ILâ€27â€ILâ€27R interactions regulate homeostasis of the TH17 pool and limit intestinal inflammation. FASEB Journal, 2008, 22, 1069.7.	0.5	0
123	Presentation of <i>Toxoplasma gondii </i> Antigens via the Endogenous Major Histocompatibility Complex Class I Pathway in Nonprofessional and Professional Antigen-Presenting Cells. Infection and Immunity, 2007, 75, 5200-5209.	2.2	75
124	Discovery and Biology of IL-23 and IL-27: Related but Functionally Distinct Regulators of Inflammation. Annual Review of Immunology, 2007, 25, 221-242.	21.8	698
125	Act1-ivating IL-17 inflammation. Nature Immunology, 2007, 8, 232-234.	14.5	28
126	Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nature Immunology, 2007, 8, 1363-1371.	14.5	733

#	Article	IF	Citations
127	Interleukin-27R (WSX-1/T-Cell Cytokine Receptor) Gene-Deficient Mice Display Enhanced Resistance to Leishmania donovani Infection but Develop Severe Liver Immunopathology. American Journal of Pathology, 2006, 168, 158-169.	3.8	126
128	Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nature Immunology, 2006, 7, 937-945.	14.5	874
129	IL-27 Limits IL-2 Production during Th1 Differentiation. Journal of Immunology, 2006, 176, 237-247.	0.8	196
130	New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nature Reviews Immunology, 2005, 5, 521-531.	22.7	741
131	A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. Journal of Neuroimmunology, 2005, 165, 63-74.	2.3	180
132	Positive and Negative Regulation of the IL-27 Receptor during Lymphoid Cell Activation. Journal of Immunology, 2005, 174, 7684-7691.	0.8	154
133	Initiation and termination of NF-κB signaling by the intracellular protozoan parasite Toxoplasma gondii. Journal of Cell Science, 2005, 118, 3501-3508.	2.0	61
134	Interleukin-15-Deficient Mice Develop Protective Immunity to Toxoplasma gondii. Infection and Immunity, 2004, 72, 6729-6732.	2.2	34
135	Development of a System To Study CD4 + -T-Cell Responses to Transgenic Ovalbumin-Expressing Toxoplasma gondii during Toxoplasmosis. Infection and Immunity, 2004, 72, 7240-7246.	2.2	67
136	The IL-27 Receptor (WSX-1) Is an Inhibitor of Innate and Adaptive Elements of Type 2 Immunity. Journal of Immunology, 2004, 173, 5626-5634.	0.8	226
137	Cutting Edge: Early IL-4 Production Governs the Requirement for IL-27-WSX-1 Signaling in the Development of Protective Th1 Cytokine Responses following <i>Leishmania major</i> Journal of Immunology, 2004, 172, 4672-4675.	0.8	97
138	IL-23 Provides a Limited Mechanism of Resistance to Acute Toxoplasmosis in the Absence of IL-12. Journal of Immunology, 2004, 173, 1887-1893.	0.8	149
139	STAT1 Plays a Critical Role in the Regulation of Antimicrobial Effector Mechanisms, but Not in the Development of Th1-Type Responses during Toxoplasmosis. Journal of Immunology, 2004, 172, 457-463.	0.8	144
140	TRAF6-Dependent Mitogen-Activated Protein Kinase Activation Differentially Regulates the Production of Interleukin-12 by Macrophages in Response to Toxoplasma gondii. Infection and Immunity, 2004, 72, 5662-5667.	2.2	68
141	New lessons from old pathogens: what parasitic infections have taught us about the role of nuclear factor-kappaB in the regulation of immunity. Immunological Reviews, 2004, 201, 48-56.	6.0	63
142	The role of IL-27 in the development of T-cell responses during parasitic infections. Immunological Reviews, 2004, 202, 106-114.	6.0	56
143	The role of astrocytes in the immunopathogenesis of toxoplasmic encephalitis. International Journal for Parasitology, 2004, 34, 543-548.	3.1	80
144	Costimulation in Resistance to Infection and Development of Immune Pathology: Lessons from Toxoplasma. Immunologic Research, 2003, 27, 331-340.	2.9	8

#	Article	IF	CITATIONS
145	Understanding the role of the CD40-CD40L interaction in resistance to parasitic infections. Parasite Immunology, 2003, 25, 179-183.	1.5	6
146	The IL-27R (WSX-1) Is Required to Suppress T Cell Hyperactivity during Infection. Immunity, 2003, 19, 645-655.	14.3	439
147	IL-10 fails to inhibit the production of IL-18 in response to inflammatory stimuli. Cytokine, 2003, 21, 84-90.	3.2	12
148	Control of Effector CD8+ T Cell Function by the Transcription Factor Eomesodermin. Science, 2003, 302, 1041-1043.	12.6	896
149	An essential role of Th1 responses and interferon gamma in infection-mediated suppression of neoplastic growth. Cancer Biology and Therapy, 2003, 2, 687-93.	3.4	17
150	Cutting Edge: Identification of c-Rel-Dependent and -Independent Pathways of IL-12 Production During Infectious and Inflammatory Stimuli. Journal of Immunology, 2002, 168, 2590-2594.	0.8	102
151	Susceptibility of Interleukin-2-Deficient Mice to Toxoplasma gondii Is Associated with a Defect in the Production of Gamma Interferon. Infection and Immunity, 2002, 70, 4757-4761.	2.2	36
152	NF-κB2 Is Required for Optimal CD40-Induced IL-12 Production but Dispensable for Th1 Cell Differentiation. Journal of Immunology, 2002, 168, 4406-4413.	0.8	47
153	Contribution of Interleukin-12 (IL-12) and the CD28/B7 and CD40/CD40 Ligand Pathways to the Development of a Pathological T-Cell Response in IL-10-Deficient Mice. Infection and Immunity, 2002, 70, 6940-6947.	2.2	17
154	A Role for Inducible Costimulator Protein in the CD28- Independent Mechanism of Resistance toToxoplasma gondii. Journal of Immunology, 2002, 169, 937-943.	0.8	57
155	THE ROLE OF CYTOKINES AND THEIR SIGNALING PATHWAYS IN THE REGULATION OF IMMUNITY TO Toxoplasma gondii. International Reviews of Immunology, 2002, 21, 373-403.	3.3	67
156	Regulatory pathways involved in the infection-induced production of IFN- \hat{l}^3 by NK cells. Microbes and Infection, 2002, 4, 1531-1538.	1.9	72
157	Interleukin-10 does not contribute to the pathogenesis of a virulent strain of Toxoplasma gondii. Parasite Immunology, 2001, 23, 291-296.	1.5	33
158	A Role for CD44 in the Production of IFN- \hat{I}^3 and Immunopathology During Infection with Toxoplasma gondii. Journal of Immunology, 2001, 166, 5726-5732.	0.8	34
159	Bystander Activation of CD8+ T Cells Contributes to the Rapid Production of IFN- \hat{I}^3 in Response to Bacterial Pathogens. Journal of Immunology, 2001, 166, 1097-1105.	0.8	275
160	The CD40/CD40 Ligand Interaction Is Required for Resistance to Toxoplasmic Encephalitis. Infection and Immunity, 2000, 68, 1312-1318.	2.2	113
161	Identification of STAT4-Dependent and Independent Mechanisms of Resistance toToxoplasma gondii. Journal of Immunology, 2000, 165, 2619-2627.	0.8	80
162	Blockade of Costimulation Prevents Infection-Induced Immunopathology in Interleukin-10-Deficient Mice. Infection and Immunity, 2000, 68, 2837-2844.	2.2	30

#	Article	IF	CITATIONS
163	Interleukin-18 (IL-18) Enhances Innate IL-12-Mediated Resistance to Toxoplasma gondii. Infection and Immunity, 2000, 68, 6932-6938.	2.2	104
164	IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN- \hat{l}^3 when combined with IL-18. European Journal of Immunology, 1999, 29, 2658-2665.	2.9	174
165	IL-10 enhances NK cell proliferation, cytotoxicity and production of IFN- \hat{l}^3 when combined with IL-18. European Journal of Immunology, 1999, 29, 2658-2665.	2.9	4
166	Type I interferons enhance production of IFN- \hat{l}^3 by NK cells. Immunology Letters, 1997, 59, 1-5.	2.5	88
167	Comparison of the effects of interleukinâ€1α, interleukinâ€lβ and interferonâ€Î³â€inducing factor on the production of interferonâ€Î³ by natural killer. European Journal of Immunology, 1997, 27, 2787-2792.	2.9	124
168	Transforming growth factor- \hat{l}^2 inhibits interleukin-12-induced production of interferon- \hat{l}^3 by natural killer cells: A role for transforming growth factor- \hat{l}^2 in the regulation of T cell-independent resistance toToxoplasma gondii. European Journal of Immunology, 1995, 25, 994-1000.	2.9	143
169	Innate Immunity to Parasitic Infections. , 0, , 111-125.		2