Vladimir N Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8661126/publications.pdf

Version: 2024-02-01

109321 128289 3,953 61 35 60 citations h-index g-index papers 65 65 65 4601 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Inhibition of ATM kinase upregulates levels of cell death induced by cannabidiol and \hat{I}^3 -irradiation in human glioblastoma cells. Oncotarget, 2019, 10, 825-846.	1.8	21
2	Regulation of human glioblastoma cell death by combined treatment of cannabidiol, \hat{l}^3 -radiation and small molecule inhibitors of cell signaling pathways. Oncotarget, 2017, 8, 74068-74095.	1.8	34
3	2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells. Archives of Toxicology, 2016, 90, 2187-2200.	4.2	41
4	Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 996-1015.	4.9	5
5	Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell death. Archives of Toxicology, 2015, 89, 1057-1070.	4.2	80
6	A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 399-413.	4.9	40
7	Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC). Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1736-1754.	4.9	32
8	Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment. Experimental Cell Research, 2013, 319, 875-887.	2.6	35
9	Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 188-200.	4.9	18
10	The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance., 2013, , 35-61.		7
11	Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-l⁰B–STAT3-directed gene expression. Experimental Cell Research, 2011, 317, 1548-1566.	2.6	17
12	Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 1268-1284.	4.9	31
13	Suppression of the proinflammatory response of metastatic melanoma cells increases TRAILâ€induced apoptosis. Journal of Cellular Biochemistry, 2011, 112, 463-475.	2.6	14
14	Mechanism of Radiation Carcinogenesis: Role of the TGFBI Gene and the Inflammatory Signaling Cascade. Advances in Experimental Medicine and Biology, 2011, 720, 163-170.	1.6	12
15	Radiation Induced Non-targeted Response: Mechanism and Potential Clinical Implications. Current Molecular Pharmacology, 2011, 4, 96-105.	1.5	190
15 16		2.4	190 294
	Molecular Pharmacology, 2011, 4, 96-105. Mechanism of radiation-induced bystander effects: a unifying model. Journal of Pharmacy and		

#	Article	IF	Citations
19	Regulation of early signaling and gene expression in the α-particle and bystander response of IMR-90 human fibroblasts. BMC Medical Genomics, 2010, 3, 31.	1.5	42
20	Inhibition of Ataxia Telangiectasia Mutated Kinase Activity Enhances TRAIL-Mediated Apoptosis in Human Melanoma Cells. Cancer Research, 2009, 69, 3510-3519.	0.9	60
21	The Yin and Yang of Low-Dose Radiobiology. , 2009, , 135-142.		O
22	Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 790-802.	4.9	69
23	Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Experimental Cell Research, 2008, 314, 1163-1176.	2.6	99
24	Mitochondrial Function and Nuclear Factor-ήB–Mediated Signaling in Radiation-Induced Bystander Effects. Cancer Research, 2008, 68, 2233-2240.	0.9	163
25	Sequential Treatment by Ionizing Radiation and Sodium Arsenite Dramatically Accelerates TRAIL-Mediated Apoptosis of Human Melanoma Cells. Cancer Research, 2007, 67, 5397-5407.	0.9	27
26	Dual treatment with COX-2 inhibitor and sodium arsenite leads to induction of surface Fas Ligand expression and Fas-Ligand-mediated apoptosis in human melanoma cells. Experimental Cell Research, 2006, 312, 1401-1417.	2.6	15
27	Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression. Experimental Cell Research, 2006, 312, 4120-4138.	2.6	31
28	Opposite Roles of FAP-1 and Dynamin in the Regulation of Fas (CD95) Translocation to the Cell Surface and Susceptibility to Fas Ligand-mediated Apoptosis. Journal of Biological Chemistry, 2006, 281, 1840-1852.	3.4	62
29	Combined treatment with EGFR inhibitors and arsenite upregulated apoptosis in human EGFR-positive melanomas: a role of suppression of the PI3K-AKT pathway. Oncogene, 2005, 24, 616-626.	5.9	60
30	Mechanism of radiation-induced bystander effect: Role of the cyclooxygenase-2 signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14641-14646.	7.1	239
31	Mitochondrial Damage Mediates Genotoxicity of Arsenic in Mammalian Cells. Cancer Research, 2005, 65, 3236-3242.	0.9	138
32	Arsenite Sensitizes Human Melanomas to Apoptosis via Tumor Necrosis Factor α-mediated Pathway. Journal of Biological Chemistry, 2004, 279, 22747-22758.	3.4	56
33	STRA13 Interacts with STAT3 and Modulates Transcription of STAT3-dependent Targets. Journal of Molecular Biology, 2004, 340, 641-653.	4.2	56
34	Death receptors and melanoma resistance to apoptosis. Oncogene, 2003, 22, 3152-3161.	5.9	201
35	ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene, 2003, 22, 4092-4101.	5.9	129
36	FAP-1 Association with Fas (Apo-1) Inhibits Fas Expression on the Cell Surface. Molecular and Cellular Biology, 2003, 23, 3623-3635.	2.3	100

#	Article	IF	CITATIONS
37	Regulation of Fas Expression by STAT3 and c-Jun Is Mediated by Phosphatidylinositol 3-Kinase-AKT Signaling. Journal of Biological Chemistry, 2002, 277, 4932-4944.	3.4	85
38	An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. Journal of Clinical Investigation, 2002, 110, 643-650.	8.2	58
39	An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. Journal of Clinical Investigation, 2002, 110, 643-650.	8.2	18
40	An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. Journal of Clinical Investigation, 2002, 110, 643-650.	8.2	46
41	Cooperation between STAT3 and c-Jun Suppresses Fas Transcription. Molecular Cell, 2001, 7, 517-528.	9.7	227
42	Expression of ring finger-deleted TRAF2 sensitizes metastatic melanoma cells to apoptosis via up-regulation of p38, TNF1± and suppression of NF-1ºB activities. Oncogene, 2001, 20, 2243-2253.	5.9	41
43	TIP49b, a Regulator of Activating Transcription Factor 2 Response to Stress and DNA Damage. Molecular and Cellular Biology, 2001, 21, 8398-8413.	2.3	70
44	Jun NH 2 -Terminal Kinase Phosphorylation of p53 on Thr-81 Is Important for p53 Stabilization and Transcriptional Activities in Response to Stress. Molecular and Cellular Biology, 2001, 21, 2743-2754.	2.3	276
45	Sex steroids induce apoptosis of CD8+CD4+ double-positive thymocytes via TNF-α. European Journal of Immunology, 2000, 30, 2586-2592.	2.9	51
46	Role of TRAF2/GCK in melanoma sensitivity to UV-induced apoptosis. Oncogene, 2000, 19, 933-942.	5.9	37
47	p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-κB activity and Fas expression. Oncogene, 2000, 19, 3003-3012.	5.9	121
48	TNF- \hat{l}_{\pm} Is the Critical Mediator of the Cyclic AMP-Induced Apoptosis of CD8+4+ Double-Positive Thymocytes. Journal of Immunology, 2000, 164, 1689-1694.	0.8	28
49	Down-regulation of Tumor Necrosis Factor α Expression by Activating Transcription Factor 2 Increases UVC-induced Apoptosis of Late-stage Melanoma Cells. Journal of Biological Chemistry, 1999, 274, 14079-14089.	3.4	46
50	Biochemical and kinetic characterization of the glucocorticoid-induced apoptosis of immature CD4+CD8+ thymocytes International Immunology, 1998, 10, 1807-1817.	4.0	32
51	Regulation of Fas-dependent activation-induced T cell apoptosis by cAMP signaling: a potential role for transcription factor NF-κB. Oncogene, 1997, 14, 2455-2464.	5.9	71
52	Transcription Factor Activation during Signal-induced Apoptosis of Immature CD4+CD8+ Thymocytes. Journal of Biological Chemistry, 1997, 272, 8558-8566.	3.4	39
53	Pleiotropic effects of Bcl-2 on transcription factors in T cells: potential role of NF-KB p50–p50 for the anti-apoptotic function of Bcl-2. International Immunology, 1995, 7, 1709-1720.	4.0	47
54	Transcription factors in mouse fetal thymus development. International Immunology, 1992, 4, 729-737.	4.0	18

#	Article	IF	CITATIONS
55	Molecular cloning of a bovine immunoglobulin lambda chain cDNA. Gene, 1988, 67, 41-48.	2.2	14
56	Molecular Cloning of Bovine \hat{l}^2 -Lactoglobulin cDNA. Biological Chemistry Hoppe-Seyler, 1988, 369, 425-430.	1.4	7
57	Stimulation and inhibition of growth of mice bearing the human growth hormone gene. Bulletin of Experimental Biology and Medicine, 1986, 102, 1265-1269.	0.8	O
58	Identification of bacterial clones encoding bovine caseins by direct immunological screening of the cDNA library. Gene, 1984, 32, 381-388.	2.2	5
59	Protein Antigens in the Differentiation of Maize Root and Scutellum. Biochemie Und Physiologie Der Pflanzen, 1983, 178, 653-663.	0.5	1
60	Embryonal antigens in maize caryopses: The temporal order of antigen accumulation during embryogenesis. Planta, 1977, 135, 225-231.	3.2	18
61	Protein patterns of developing mitochondria at the onset of germination in maize (Zea maysL.). FEBS Letters, 1976, 65, 383-385.	2.8	6