List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative Sigma Factors and Their Roles in Bacterial Virulence. Microbiology and Molecular Biology Reviews, 2005, 69, 527-543.	2.9	325
2	Listeria monocytogenes σ B Regulates Stress Response and Virulence Functions. Journal of Bacteriology, 2003, 185, 5722-5734.	1.0	321
3	Food Safety Hazards Associated with Consumption of Raw Milk. Foodborne Pathogens and Disease, 2009, 6, 793-806.	0.8	305
4	Genetic Diversity and Spoilage Potentials among Pseudomonas spp. Isolated from Fluid Milk Products and Dairy Processing Plants. Applied and Environmental Microbiology, 2003, 69, 130-138.	1.4	287
5	General Stress Transcription Factor Ï, ^B and Its Role in Acid Tolerance and Virulence of <i>Listeria monocytogenes</i> . Journal of Bacteriology, 1998, 180, 3650-3656.	1.0	280
6	Role of Ï, B in Heat, Ethanol, Acid, and Oxidative Stress Resistance and during Carbon Starvation in Listeria monocytogenes. Applied and Environmental Microbiology, 2001, 67, 4454-4457.	1.4	237
7	Listeria monocytogenes Isolates from Foods and Humans Form Distinct but Overlapping Populations. Applied and Environmental Microbiology, 2004, 70, 5833-5841.	1.4	229
8	Epidemiology, Pathogenesis, and Prevention of FoodborneVibrio parahaemolyticusInfections. Foodborne Pathogens and Disease, 2004, 1, 74-88.	0.8	212
9	Formative Research on Hygiene Behaviors and Geophagy among Infants and Young Children and Implications of Exposure to Fecal Bacteria. American Journal of Tropical Medicine and Hygiene, 2013, 89, 709-716.	0.6	205
10	Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology (United Kingdom), 2001, 147, 1095-1104.	0.7	204
11	Molecular Studies on the Ecology of Listeria monocytogenes in the Smoked Fish Processing Industry. Applied and Environmental Microbiology, 2001, 67, 198-205.	1.4	203
12	Effects of Somatic Cell Count on Quality and Shelf-Life of Pasteurized Fluid Milk. Journal of Dairy Science, 2000, 83, 264-274.	1.4	199
13	How the Bacterial Pathogen Listeria monocytogenes Mediates the Switch from Environmental Dr. Jekyll to Pathogenic Mr. Hyde. Infection and Immunity, 2006, 74, 2505-2512.	1.0	174
14	Modulation of stress and virulence in Listeria monocytogenes. Trends in Microbiology, 2008, 16, 388-396.	3.5	173
15	Role of Listeria monocytogenes σ B in Survival of Lethal Acidic Conditions and in the Acquired Acid Tolerance Response. Applied and Environmental Microbiology, 2003, 69, 2692-2698.	1.4	165
16	Comparative Analysis of the σ ^B -Dependent Stress Responses in <i>Listeria monocytogenes</i> and <i>Listeria innocua</i> Strains Exposed to Selected Stress Conditions. Applied and Environmental Microbiology, 2008, 74, 158-171.	1.4	163
17	Ïf B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology (United Kingdom), 2004, 150, 3843-3855.	0.7	160
18	Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics, 2009, 10, 641.	1.2	160

#	Article	IF	CITATIONS
19	Identification and Characterization of Psychrotolerant Sporeformers Associated with Fluid Milk Production and Processing. Applied and Environmental Microbiology, 2012, 78, 1853-1864.	1.4	160
20	Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4744-4753.	0.8	157
21	Sigma B Contributes to PrfA-Mediated Virulence in Listeria monocytogenes. Infection and Immunity, 2002, 70, 3948-3952.	1.0	153
22	Bacterial Stress Responses: What Doesn't Kill Them Can Make Them Stronger. PLoS Biology, 2006, 4, e23.	2.6	151
23	Quantitative Descriptive Analysis and Principal Component Analysis for Sensory Characterization of Ultrapasteurized Milk. Journal of Dairy Science, 2001, 84, 12-20.	1.4	148
24	Characterization of Pasteurized Fluid Milk Shelfâ€life Attributes. Journal of Food Science, 2004, 69, M207.	1.5	133
25	Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. Journal of Dairy Science, 2010, 93, 2792-2802.	1.4	132
26	Molecular Subtyping and Tracking of Listeria monocytogenes in Latin-Style Fresh-Cheese Processing Plants. Journal of Dairy Science, 2004, 87, 2803-2812.	1.4	128
27	Molecular and Phenotypic Characterization of Pseudomonas spp. Isolated from Milk. Applied and Environmental Microbiology, 2000, 66, 2085-2095.	1.4	123
28	Ϊƒ B contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB. Microbiology (United Kingdom), 2005, 151, 3215-3222.	0.7	121
29	Sigma B Contributes to Listeria monocytogenes Gastrointestinal Infection but Not to Systemic Spread in the Guinea Pig Infection Model. Infection and Immunity, 2006, 74, 876-886.	1.0	114
30	Microarray-Based Characterization of the <i>Listeria monocytogenes</i> Cold Regulon in Log- and Stationary-Phase Cells. Applied and Environmental Microbiology, 2007, 73, 6484-6498.	1.4	114
31	The Evolving Role of Coliforms As Indicators of Unhygienic Processing Conditions in Dairy Foods. Frontiers in Microbiology, 2016, 7, 1549.	1.5	114
32	Characterization and Pathogenic Potential of Listeria monocytogenes Isolates from the Smoked Fish Industry. Applied and Environmental Microbiology, 2001, 67, 646-653.	1.4	110
33	Identification of Components of the Sigma B Regulon in <i>Listeria monocytogenes</i> That Contribute to Acid and Salt Tolerance. Applied and Environmental Microbiology, 2008, 74, 6848-6858.	1.4	110
34	High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk. Journal of Dairy Science, 2009, 92, 4823-4832.	1.4	109
35	Listeria monocytogenes Shows Temperature-Dependent and -Independent Responses to Salt Stress, Including Responses That Induce Cross-Protection against Other Stresses. Applied and Environmental Microbiology, 2012, 78, 2602-2612.	1.4	108
36	Contributions of Listeria monocytogenes σ B and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. Microbiology (United Kingdom), 2006, 152, 1827-1838.	0.7	107

#	Article	IF	CITATIONS
37	Distribution of Serotypes and Antimicrobial Resistance Genes among Streptococcus agalactiae Isolates from Bovine and Human Hosts. Journal of Clinical Microbiology, 2005, 43, 5899-5906.	1.8	104
38	<i>Listeria monocytogenes</i> Ïf ^B Modulates PrfA-Mediated Virulence Factor Expression. Infection and Immunity, 2009, 77, 2113-2124.	1.0	104
39	Exposure to Salt and Organic Acids Increases the Ability of Listeria monocytogenes To Invade Caco-2 Cells but Decreases Its Ability To Survive Gastric Stress. Applied and Environmental Microbiology, 2006, 72, 5384-5395.	1.4	103
40	Nisin Resistance of Listeria monocytogenes Is Increased by Exposure to Salt Stress and Is Mediated via LiaR. Applied and Environmental Microbiology, 2013, 79, 5682-5688.	1.4	103
41	Identification and Characterization of Elevated Microbial Counts in Bulk Tank Raw Milk. Journal of Dairy Science, 2001, 84, 292-298.	1.4	101
42	RsbT and RsbV Contribute to If B -Dependent Survival under Environmental, Energy, and Intracellular Stress Conditions in Listeria monocytogenes. Applied and Environmental Microbiology, 2004, 70, 5349-5356.	1.4	101
43	When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. Journal of Dairy Science, 2011, 94, 3176-3183.	1.4	101
44	Tracking Heat-Resistant, Cold-Thriving Fluid Milk Spoilage Bacteria from Farm to Packaged Product. Journal of Dairy Science, 2008, 91, 1218-1228.	1.4	100
45	Transcriptomic and Phenotypic Analyses Identify Coregulated, Overlapping Regulons among PrfA, CtsR, HrcA, and the Alternative Sigma Factors Ïf ^B , Ïf ^C , Ĭf ^H , and Ïf ^L in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2011, 77, 187-200.	1.4	100
46	A 100-Year Review: Microbiology and safety of milk handling. Journal of Dairy Science, 2017, 100, 9933-9951.	1.4	100
47	DNA Sequence-Based Subtyping and Evolutionary Analysis of Selected Salmonella enterica Serotypes. Journal of Clinical Microbiology, 2005, 43, 3688-3698.	1.8	99
48	Effects of Fat Content on the Sensory Properties, Melting, Color, and Hardness of Ice Cream. Journal of Dairy Science, 1999, 82, 32-38.	1.4	97
49	Ïf B-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology (United Kingdom), 2003, 149, 3247-3256.	0.7	96
50	<i>Listeria monocytogenes</i> Ïf ^B Has a Small Core Regulon and a Conserved Role in Virulence but Makes Differential Contributions to Stress Tolerance across a Diverse Collection of Strains. Applied and Environmental Microbiology, 2010, 76, 4216-4232.	1.4	96
51	Tracking Spore-Forming Bacterial Contaminants in Fluid Milk-Processing Systems. Journal of Dairy Science, 2007, 90, 4872-4883.	1.4	95
52	Persistence of Escherichia coli O157:H7 in Dairy Fermentation Systems. Journal of Food Protection, 1998, 61, 1602-1608.	0.8	88
53	ADSA Foundation Scholar Award Fluid Dairy Product Quality and Safety: Looking to the Future. Journal of Dairy Science, 2001, 84, 1-11.	1.4	83
54	Short communication: Bacterial ecology of high-temperature, short-time pasteurized milk processed in the United States. Journal of Dairy Science, 2009, 92, 4833-4840.	1.4	83

#	Article	IF	CITATIONS
55	Role of σ B in Regulating the Compatible Solute Uptake Systems of Listeria monocytogenes : Osmotic Induction of opuC Is σ B Dependent. Applied and Environmental Microbiology, 2003, 69, 2015-2022.	1.4	82
56	Listeria monocytogenes $\ddot{l}f$ B Contributes to Invasion of Human Intestinal Epithelial Cells. Infection and Immunity, 2004, 72, 7374-7378.	1.0	82
57	Microbiological and Chemical Quality of Raw Milk in New York State. Journal of Dairy Science, 1998, 81, 1743-1748.	1.4	75
58	Salt Stress Phenotypes in <i>Listeria monocytogenes</i> Vary by Genetic Lineage and Temperature. Foodborne Pathogens and Disease, 2010, 7, 1537-1549.	0.8	75
59	Development of Molecular Typing Methods for Bacillus spp. and Paenibacillus spp. Isolated from Fluid Milk Products. Journal of Food Science, 2006, 71, M50.	1.5	74
60	Molecular Ecology of <i>Listeria monocytogenes</i> : Evidence for a Reservoir in Milking Equipment on a Dairy Farm. Applied and Environmental Microbiology, 2009, 75, 1315-1323.	1.4	73
61	${\rm l}f$ B Activation under Environmental and Energy Stress Conditions in Listeria monocytogenes. Applied and Environmental Microbiology, 2006, 72, 5197-5203.	1.4	72
62	Temperature-Dependent Expression of Listeria monocytogenes Internalin and Internalin-Like Genes Suggests Functional Diversity of These Proteins among the Listeriae. Applied and Environmental Microbiology, 2007, 73, 2806-2814.	1.4	72
63	Vitamin A Degradation and Light-Oxidized Flavor Defects in Milk. Journal of Dairy Science, 2002, 85, 351-354.	1.4	70
64	Ϊƒ ^B -Dependent and Ϊƒ ^B -Independent Mechanisms Contribute to Transcription of <i>Listeria monocytogenes</i> Cold Stress Genes during Cold Shock and Cold Growth. Applied and Environmental Microbiology, 2007, 73, 6019-6029.	1.4	70
65	Contributions of Two-Component Regulatory Systems, Alternative I_f Factors, and Negative Regulators to Listeria monocytogenes Cold Adaptation and Cold Growth. Journal of Food Protection, 2008, 71, 420-425.	0.8	70
66	Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest. Journal of Dairy Science, 2014, 97, 2487-2497.	1.4	70
67	Scientific Integrity Principles and Best Practices: Recommendations from a Scientific Integrity Consortium. Science and Engineering Ethics, 2019, 25, 327-355.	1.7	70
68	Effects of Fat Replacers on the Sensory Properties, Color, Melting, and Hardness of Ice Cream. Journal of Dairy Science, 1999, 82, 2094-2100.	1.4	68
69	Listeria monocytogenes Grown at 7°C Shows Reduced Acid Survival and an Altered Transcriptional Response to Acid Shock Compared to L. monocytogenes Grown at 37°C. Applied and Environmental Microbiology, 2012, 78, 3824-3836.	1.4	68
70	Molecular Subtyping and Characterization of Psychrotolerant Endospore-Forming Bacteria in Two New York State Fluid Milk Processing Systems. Journal of Food Protection, 2007, 70, 2354-2364.	0.8	67
71	A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes. PLoS ONE, 2011, 6, e19019.	1.1	67
72	Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Applied and Environmental Microbiology, 2016, 82, 4456-4469.	1.4	66

#	Article	IF	CITATIONS
73	Transcriptomic and Phenotypic Analyses Suggest a Network between the Transcriptional Regulators HrcA and σ ^B in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2007, 73, 7981-7991.	1.4	64
74	Bacterial Tracking in a Dairy Production System Using Phenotypic and Ribotyping Methods. Journal of Food Protection, 1998, 61, 1336-1340.	0.8	61
75	The Listeria monocytogenes prfAP2 promoter is regulated by sigma B in a growth phase dependent manner. FEMS Microbiology Letters, 2005, 245, 329-336.	0.7	61
76	VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts. Applied and Environmental Microbiology, 2015, 81, 4553-4562.	1.4	61
77	Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon. Applied and Environmental Microbiology, 2015, 81, 6812-6824.	1.4	61
78	Genetic and Transcriptional Organization of the Region Encoding the β Subunit of Bacillus subtilis RNA Polymerase. Journal of Biological Chemistry, 1995, 270, 20329-20336.	1.6	60
79	Comparative Genomic Analysis of the sigB Operon in Listeria monocytogenes and in Other Gram-Positive Bacteria. Current Microbiology, 2004, 48, 39-46.	1.0	60
80	Spore populations among bulk tank raw milk and dairy powders are significantly different. Journal of Dairy Science, 2015, 98, 8492-8504.	1.4	60
81	Comparative Phenotypic, Molecular, and Virulence Characterization of Vibrio parahaemolyticus O3:K6 Isolates. Applied and Environmental Microbiology, 2002, 68, 2901-2909.	1.4	59
82	Proteomic Analyses of a <i>Listeria monocytogenes</i> Mutant Lacking σ ^B Identify New Components of the σ ^B Regulon and Highlight a Role for Ĭƒ ^B in the Utilization of Glycerol. Applied and Environmental Microbiology, 2008, 74, 594-604.	1.4	59
83	Symposium review: Effect of post-pasteurization contamination on fluid milk quality. Journal of Dairy Science, 2018, 101, 861-870.	1.4	59
84	Systematic review of the <i>Listeria monocytogenes</i> if ^B regulon supports a role in stress response, virulence and metabolism. Future Microbiology, 2019, 14, 801-828.	1.0	59
85	Molecular Subtyping and Characterization of Bovine and Human Streptococcus agalactiae Isolates. Journal of Clinical Microbiology, 2005, 43, 1177-1186.	1.8	58
86	The Alternative Sigma Factor σB and the Virulence Gene Regulator PrfA Both Regulate Transcription of Listeria monocytogenes Internalins. Applied and Environmental Microbiology, 2007, 73, 2919-2930.	1.4	54
87	Phenotypic and Transcriptomic Analyses Demonstrate Interactions between the Transcriptional Regulators CtsR and Sigma B in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2007, 73, 7967-7980.	1.4	54
88	Real-Time PCR Detection of Paenibacillus spp. in Raw Milk To Predict Shelf Life Performance of Pasteurized Fluid Milk Products. Applied and Environmental Microbiology, 2012, 78, 5855-5863.	1.4	54
89	Ribotyping of Streptococcus uberis from a dairy's environment, bovine feces and milk. Veterinary Microbiology, 2005, 109, 257-265.	0.8	53
90	Cross Talk between SigB and PrfA in Listeria monocytogenes Facilitates Transitions between Extra- and Intracellular Environments. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	53

#	Article	IF	CITATIONS
91	A standard bacterial isolate set for research on contemporary dairy spoilage. Journal of Dairy Science, 2015, 98, 5806-5817.	1.4	52
92	Mastitis-Causing Streptococci Are Important Contributors to Bacterial Counts in Raw Bulk Tank Milk. Journal of Food Protection, 2004, 67, 2644-2650.	0.8	51
93	Quantitative Risk Assessment of Listeriosis Due to Consumption of Raw Milkâ€. Journal of Food Protection, 2011, 74, 1268-1281.	0.8	51
94	Home Alone: Elimination of All but One Alternative Sigma Factor in Listeria monocytogenes Allows Prediction of New Roles for ÏfB. Frontiers in Microbiology, 2017, 8, 1910.	1.5	49
95	Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk. Journal of Dairy Science, 2016, 99, 130-140.	1.4	48
96	Emerging needs and opportunities in foodborne disease detection and prevention: From tools to people. Food Microbiology, 2018, 75, 65-71.	2.1	48
97	Peroxide Test Strips Detect Added Hydrogen Peroxide in Raw Milk at Levels Affecting Bacterial Load. Journal of Food Protection, 2014, 77, 1809-1813.	0.8	47
98	Spore test parameters matter: Mesophilic and thermophilic spore counts detected in raw milk and dairy powders differ significantly by test method. Journal of Dairy Science, 2016, 99, 5180-5191.	1.4	46
99	Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection. Journal of Dairy Science, 2016, 99, 6105-6120.	1.4	46
100	Fluid Milk Vitamin Fortification Compliance in New York State. Journal of Dairy Science, 2001, 84, 2813-2820.	1.4	43
101	Sensory Threshold of Light-Oxidized Flavor Defects in Milk. Journal of Food Science, 2002, 67, 2770-2773.	1.5	42
102	ÏfBand ÏfLContribute toListeria monocytogenes10403S Response to the Antimicrobial Peptides SdpC and Nisin. Foodborne Pathogens and Disease, 2009, 6, 1057-1065.	0.8	42
103	Acceptance of 2% Ultra-Pasteurized Milk by Consumers, 6 to 11 Years Old. Journal of Dairy Science, 2001, 84, 951-954.	1.4	41
104	Results from raw milk microbiological tests do not predict the shelf-life performance of commercially pasteurized fluid milk. Journal of Dairy Science, 2011, 94, 1211-1222.	1.4	41
105	Identification of dairy farm management practices associated with the presence of psychrotolerant sporeformers in bulk tank milk. Journal of Dairy Science, 2014, 97, 4083-4096.	1.4	41
106	Contributions of σB and PrfA to Listeria monocytogenes salt stress under food relevant conditions. International Journal of Food Microbiology, 2014, 177, 98-108.	2.1	40
107	Different management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk. Journal of Dairy Science, 2015, 98, 4338-4351.	1.4	40
108	A decade of improvement: New York State fluid milk quality. Journal of Dairy Science, 2012, 95, 7384-7390.	1.4	38

#	Article	IF	CITATIONS
109	Application of the BAX for Screening/Genus Listeria Polymerase Chain Reaction System for Monitoring Listeria Species in Cold-Smoked Fish and in the Smoked Fish Processing Environment. Journal of Food Protection, 2000, 63, 343-346.	0.8	34
110	The Listeria monocytogenes $i_f < \sup > B < \sup > Regulon and Its Virulence-Associated Functions Are Inhibited by a Small Molecule. MBio, 2011, 2, .$	1.8	33
111	Increased In Vitro Adherence and On-Farm Persistence of Predominant and Persistent Listeria monocytogenes Strains in the Milking System. Applied and Environmental Microbiology, 2011, 77, 3676-3684.	1.4	33
112	Refinement of the Listeria monocytogenes σB regulon through quantitative proteomic analysis. Microbiology (United Kingdom), 2013, 159, 1109-1119.	0.7	33
113	Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities. Journal of Food Protection, 2016, 79, 2095-2106.	0.8	33
114	Growth and persistence of Listeria monocytogenes isolates on the plant model Arabidopsis thaliana. Food Microbiology, 2008, 25, 698-704.	2.1	32
115	Differential Regulation of <i>Listeria monocytogenes</i> Internalin and Internalin-Like Genes by σ ^B and PrfA as Revealed by Subgenomic Microarray Analyses. Foodborne Pathogens and Disease, 2008, 5, 417-435.	0.8	32
116	Ϊƒ ^B - and PrfA-Dependent Transcription of Genes Previously Classified as Putative Constituents of the <i>Listeria monocytogenes</i> PrfA Regulon. Foodborne Pathogens and Disease, 2008, 5, 281-293.	0.8	32
117	Bacterial Populations in Complementary Foods and Drinking-water in Households with Children Aged 10-15 Months in Zanzibar, Tanzania. Journal of Health, Population and Nutrition, 2009, 27, 41-52.	0.7	30
118	Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt. Journal of Dairy Science, 2017, 100, 950-960.	1.4	29
119	Internal transcribed spacer (ITS) sequencing reveals considerable fungal diversity in dairy products. Journal of Dairy Science, 2017, 100, 8814-8825.	1.4	29
120	Evaluation of different methods to detect microbial hygiene indicators relevant in the dairy industry. Journal of Dairy Science, 2016, 99, 7033-7042.	1.4	28
121	Protein level identification of the Listeria monocytogenes Sigma H, Sigma L, and Sigma C regulons. BMC Microbiology, 2013, 13, 156.	1.3	27
122	Efficacy of different antimicrobials on inhibition of Listeria monocytogenes growth in laboratory medium and on cold-smoked salmon. International Journal of Food Microbiology, 2013, 165, 265-275.	2.1	27
123	Genomic comparison of sporeforming bacilli isolated from milk. BMC Genomics, 2014, 15, 26.	1.2	27
124	Alternative Sigma Factor ÏfB Is Not Essential for Listeria monocytogenes Surface Attachment. Journal of Food Protection, 2005, 68, 311-317.	0.8	26
125	Exploration of the Role of the Non-Coding RNA SbrE in L. monocytogenes Stress Response. International Journal of Molecular Sciences, 2013, 14, 378-393.	1.8	26
126	Evaluation of Adenosine Triphosphate-Bioluminescence Hygiene Monitoring for Trouble-Shooting Fluid Milk Shelf-Life Problems. Journal of Dairy Science, 1998, 81, 817-820.	1.4	25

#	Article	IF	CITATIONS
127	Characterization of Chocolate Milk Spoilage Patterns. Journal of Food Protection, 2000, 63, 516-521.	0.8	24
128	Salt Stress-Induced Transcription of σ ^B - and CtsR-Regulated Genes in Persistent and Non-persistent <i>Listeria monocytogenes</i> Strains from Food Processing Plants. Foodborne Pathogens and Disease, 2012, 9, 198-206.	0.8	24
129	Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: A case study. Journal of Dairy Science, 2012, 95, 471-475.	1.4	24
130	Evaluation of various selective media for the detection of Pseudomonas species in pasteurized milk. Journal of Dairy Science, 2012, 95, 1568-1574.	1.4	24
131	Light-Oxidized Flavor Development and Vitamin A Degradation in Chocolate Milk. Journal of Food Science, 1998, 63, 930-934.	1.5	23
132	Distribution of Internalin Gene Profiles ofListeria monocytogenesIsolates from Different Sources Associated with Phylogenetic Lineages. Foodborne Pathogens and Disease, 2007, 4, 222-232.	0.8	23
133	Regulatory network features in Listeria monocytogenes—changing the way we talk. Frontiers in Cellular and Infection Microbiology, 2014, 4, 14.	1.8	23
134	Effect of Curing Method and Freeze-Thawing on Subsequent Growth of Listeria monocytogenes on Cold-Smoked Salmon. Journal of Food Protection, 2012, 75, 1619-1626.	0.8	22
135	The Listeria monocytogenes strain 10403S BioCyc database. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	1.4	22
136	The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Frontiers in Microbiology, 2018, 9, 120.	1.5	22
137	Optimization of combinations of bactericidal and bacteriostatic treatments to control Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 2014, 179, 1-9.	2.1	21
138	Microbiology of Market Milks. , 2005, , 91-122.		20
139	Short communication: Nα-Lauroyl-l-arginine ethylester monohydrochloride reduces bacterial growth in pasteurized milk. Journal of Dairy Science, 2009, 92, 4207-4210.	1.4	20
140	Stochastic and Differential Activation of $\ddot{I}fB$ and PrfA in Listeria monocytogenes at the Single Cell Level under Different Environmental Stress Conditions. Frontiers in Microbiology, 2017, 8, 348.	1.5	19
141	Inhibition of Milk Lipolysis by Lambda Carrageenan. Journal of Dairy Science, 1982, 65, 24-27.	1.4	18
142	Effects of Acid Stress on Vibrio parahaemolyticus Survival and Cytotoxicity. Journal of Food Protection, 2004, 67, 1328-1334.	0.8	17
143	An advanced bioinformatics approach for analyzing RNA-seq data reveals sigma H-dependent regulation of competence genes in Listeria monocytogenes. BMC Genomics, 2016, 17, 115.	1.2	17
144	Detection of ViableMycobacterium aviumSubsp.ParatuberculosisUsing Luciferase Reporter Systems. Foodborne Pathogens and Disease, 2004, 1, 258-266.	0.8	16

#	Article	IF	CITATIONS
145	Phylogeny and functional conservation of σE in endospore-forming bacteria The GenBank accession numbers for the sequences determined in this work are AF225461–AF225466 Microbiology (United) Tj ETQq1	b 0.7 843	1 £ 4rgBT /O
146	Environmental Reservoir and Transmission into the Mammalian Host. , 2007, , 111-137.		12
147	Short communication: Pseudomonas azotoformans causes gray discoloration in HTST fluid milk. Journal of Dairy Science, 2017, 100, 7906-7909.	1.4	11
148	Characterization ofrpoSalleles inEscherichia coliO157:H7 and in otherE. coliserotypes. Journal of Applied Microbiology, 1999, 86, 295-301.	1.4	10
149	Fluoro-Phenyl-Styrene-Sulfonamide, a Novel Inhibitor of σ ^B Activity, Prevents the Activation of σ ^B by Environmental and Energy Stresses in Bacillus subtilis. Journal of Bacteriology, 2013, 195, 2509-2517.	1.0	10
150	Clonal Clustering Using 10-Gene Multilocus Sequence Typing Reveals an Association Between Genotype and <i>Listeria monocytogenes</i> Maximum Growth Rate in Defined Medium. Foodborne Pathogens and Disease, 2015, 12, 972-982.	0.8	9
151	Growth Temperature-Dependent Contributions of Response Regulators, Ïf ^B , PrfA, and Motility Factors to <i>Listeria monocytogenes</i> Invasion of Caco-2 Cells. Foodborne Pathogens and Disease, 2010, 7, 1337-1349.	0.8	8
152	Phosphotransferase System-Dependent Extracellular Growth of Listeria monocytogenes Is Regulated by Alternative Sigma Factors Ïf ^L and Ïf ^H . Applied and Environmental Microbiology, 2014, 80, 7673-7682.	1.4	8
153	ÏfB Plays a Limited Role in the Ability of Listeria monocytogenes Strain F2365 To Survive Oxidative and Acid Stress and in Its Virulence Characteristics. Journal of Food Protection, 2013, 76, 2079-2086.	0.8	7
154	Responding to Bioterror Concerns by Increasing Milk Pasteurization Temperature Would Increase Estimated Annual Deaths from Listeriosis. Journal of Food Protection, 2014, 77, 696-705.	0.8	7
155	Machine Learning and Advanced Statistical Modeling Can Identify Key Quality Management Practices That Affect Postpasteurization Contamination of Fluid Milk. Journal of Food Protection, 2021, 84, 1496-1511.	0.8	7
156	Vibrio parahaemolyticus Growth under Low-Iron Conditions and Survival under High-Magnesium Conditions. Journal of Food Protection, 2006, 69, 1040-1045.	0.8	5
157	World nutrition—the great breadfruit source. Ecology of Food and Nutrition, 1994, 33, 131-134.	0.8	4
158	Short Communication: Growth Characteristics of Streptococcus uberis in UHT-Treated Milk. Journal of Dairy Science, 2004, 87, 813-815.	1.4	4
159	Evaluation of a Tissue Culture–Based Approach for Differentiating between Virulent and Avirulent Vibrio parahaemolyticus Strains Based on Cytotoxicity. Journal of Food Protection, 2007, 70, 348-354.	0.8	4
160	Short communication: Postpasteurization hold temperatures of 4 or 6°C, but not raw milk holding of 24 or 72 hours, affect bacterial outgrowth in pasteurized fluid milk. Journal of Dairy Science, 2015, 98, 7640-7643.	1.4	3
161	Protein Conversion Efficiencies of Four Test Diets Based on Milk, Two Milk and Tea Treatments, and Casein. Journal of Dairy Science, 1986, 69, 979-982.	1.4	1
162	DEVELOPMENT OF A PCR ASSAY FOR DETECTION OF SPOREâ€FORMING BACTERIA. Journal of Rapid Methods and Automation in Microbiology, 1999, 7, 251-262.	0.4	1

#	Article	IF	CITATIONS
163	A practical training program for fluid milk defect judging should focus on initial training of panelists. Journal of Dairy Science, 2020, 103, 6716-6726.	1.4	1
164	Erratum to "Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: A case study―(J. Dairy Sci. 95:471–475). Journal of Dairy Science, 2012, 95, 1585.	1.4	0
165	Bacterial populations in complementary foods and drinking water in households with children 10–15 months old in Pemba Island, Tanzania. FASEB Journal, 2008, 22, 873.8.	0.2	0