Yun Jung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8660701/publications.pdf

Version: 2024-02-01

236925 233421 3,472 45 25 45 h-index citations g-index papers 45 45 45 5387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 2009, 324, 1051-1055.	12.6	688
2	A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.	27.8	633
3	Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries. ACS Nano, 2013, 7, 3532-3539.	14.6	369
4	Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 11434-11440.	8.0	236
5	Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium–Air Batteries. Nano Letters, 2015, 15, 4261-4268.	9.1	149
6	Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes. Nano Letters, 2010, 10, 2433-2440.	9.1	121
7	Bimetallic Metal–Organic Frameworks as Efficient Cathode Catalysts for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 660-667.	8.0	112
8	Free Standing Reduced Graphene Oxide Film Cathodes for Lithium Ion Batteries. ACS Applied Materials & Lithium Ion Batteries.	8.0	89
9	Nanostructured lithium sulfide materials for lithium-sulfur batteries. Journal of Power Sources, 2016, 323, 174-188.	7.8	76
10	Nanostructure design of amorphous FePO4facilitated by a virus for 3 V lithium ion battery cathodes. Journal of Materials Chemistry, 2011, 21, 1033-1039.	6.7	72
11	Bifunctional MnO ₂ -Coated Co ₃ O ₄ Hetero-structured Catalysts for Reversible Li-O ₂ Batteries. Chemistry of Materials, 2017, 29, 10542-10550.	6.7	60
12	High-Rate and High-Areal-Capacity Air Cathodes with Enhanced Cycle Life Based on RuO ₂ /MnO ₂ Bifunctional Electrocatalysts Supported on CNT for Pragmatic Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 2923-2934.	11.2	57
13	B-site doping effects of NdBa _{0.75} Ca _{0.25} Co ₂ O _{5+δ} double perovskite catalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2018, 6, 17807-17818.	10.3	50
14	Biomimetic Selective Ion Transport through Graphene Oxide Membranes Functionalized with Ion Recognizing Peptides. Chemistry of Materials, 2015, 27, 1255-1261.	6.7	49
15	Flexible Lithium″on Batteries with High Areal Capacity Enabled by Smart Conductive Textiles. Small, 2018, 14, e1703418.	10.0	48
16	Facilitated Water Transport through Graphene Oxide Membranes Functionalized with Aquaporinâ€Mimicking Peptides. Advanced Materials, 2018, 30, e1705944.	21.0	46
17	Core–Shell LiFePO ₄ /Carbonâ€Coated Reduced Graphene Oxide Hybrids for Highâ€Power Lithiumâ€ion Battery Cathodes. Chemistry - A European Journal, 2015, 21, 2132-2138.	3 . 3	44
18	Iron–cobalt bimetal decorated carbon nanotubes as cost-effective cathode catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 7020-7026.	10.3	43

#	Article	IF	Citations
19	High-Energy Layered Oxide Cathodes with Thin Shells for Improved Surface Stability. Chemistry of Materials, 2014, 26, 5973-5979.	6.7	41
20	Lithium Superoxide Hydrolysis and Relevance to Li–O ₂ Batteries. Journal of Physical Chemistry C, 2017, 121, 9657-9661.	3.1	41
21	Self-assembled hollow mesoporous Co3O4 hybrid architectures: a facile synthesis and application in Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13164.	10.3	40
22	Direct Observation of Carboxymethyl Cellulose and Styreneâ€"Butadiene Rubber Binder Distribution in Practical Graphite Anodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 41330-41337.	8.0	36
23	Highly active and thermally stable single-atom catalysts for high-temperature electrochemical devices. Energy and Environmental Science, 2020, 13, 4903-4920.	30.8	35
24	Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review. Journal of Materials Chemistry A, 2021, 9, 14656-14681.	10.3	33
25	Graphene Oxide Sieving Membrane for Improved Cycle Life in Highâ€Efficiency Redoxâ€Mediated Li–O ₂ batteries. Small, 2018, 14, e1801456.	10.0	30
26	Clarification of Solvent Effects on Discharge Products in Li–O ₂ Batteries through a Titration Method. ACS Applied Materials & Discharge Products in Li–O ₂ Batteries through a Titration Method. ACS Applied Materials & Discharge Products in Li–O ₂	8.0	25
27	High-capacitance activated bio-carbons with controlled pore size distribution for sustainable energy storage. Journal of Power Sources, 2019, 438, 226969.	7.8	24
28	Scalable Binder-Free Freestanding Electrodes Based on a Cellulose Acetate-Assisted Carbon Nanotube Fibrous Network for Practical Flexible Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6375-6384.	8.0	23
29	Synergistic Integration of Soluble Catalysts with Carbon-Free Electrodes for Li–O ₂ Batteries. ACS Catalysis, 2017, 7, 8192-8199.	11.2	21
30	Charge Transport Properties of Lithium Superoxide in Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 12575-12583.	5.1	17
31	TFSI Anion Grafted Polymer as an Ion-Conducting Protective Layer on Magnesium Metal for Rechargeable Magnesium Batteries. Energy Storage Materials, 2022, 51, 108-121.	18.0	17
32	Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates. Scientific Reports, 2016, 6, 37673.	3.3	15
33	Maximal Utilization of a High-Loading Cathode in Li–O ₂ Batteries: A Double Oxygen Supply System. ACS Applied Materials & Supply 11, 30872-30879.	8.0	15
34	Fibrous all-in-one monolith electrodes with a biological gluing layer and a membrane shell forÂweavable lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6633-6641.	10.3	13
35	Aquaporinâ€Incorporated Grapheneâ€Oxide Membrane for Pressurized Desalination with Superior Integrity Enabled by Molecular Recognition. Advanced Science, 2021, 8, e2101882.	11.2	13
36	Interface engineering on a Li metal anode for an electro-chemo-mechanically stable anodic interface in all-solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 10662-10671.	10.3	12

Yun Jung Lee

#	Article	IF	CITATIONS
37	<i>In Situ</i> Formed Ir ₃ Li Nanoparticles as Active Cathode Material in Li–Oxygen Batteries. Journal of Physical Chemistry A, 2019, 123, 10047-10056.	2.5	11
38	RuO ₂ â€coated MoS ₂ Nanosheets as Cathode Catalysts for High Efficiency LiO ₂ Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 642-649.	1.9	11
39	Biotemplated Nanocomposites of Transition-Metal Oxides/Carbon Nanotubes with Highly Stable and Efficient Electrochemical Interfaces for High-Power Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 7804-7812.	5.1	11
40	Morphological control of electrodeposited lithium metal <i>via</i> seeded growth: stepwise spherical to fibrous lithium growth. Journal of Materials Chemistry A, 2021, 9, 1803-1811.	10.3	11
41	Understanding anion-redox reactions in cathode materials of lithium-ion batteries through in situ characterization techniques: a review. Nanotechnology, 2022, 33, 182003.	2.6	11
42	Liquidâ€Based Janus Electrolyte for Sustainable Redox Mediation in Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2102096.	19.5	9
43	High Capacity and Fast Chargeâ€Discharge Li ₄ Ti ₅ O ₁₂ Nanoflakes/TiO ₂ Nanotubes Composite Anode Material for Lithium Ion Batteries. Energy Technology, 2018, 6, 2461-2468.	3.8	8
44	Improved electrochemical performance of a cyclic ultracapacitor using slurry electrodes under various flow conditions. International Journal of Energy Research, 2017, 41, 1202-1210.	4. 5	4
45	Abnormal Overcharging during Lithium–Ether Co-Intercalation in a Graphite System: Formation of Shuttling Species by the Reduction of the TFSI Anion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49541-49548.	8.0	3