Kannadka Ramesha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659686/publications.pdf

Version: 2024-02-01

43 papers

3,586 citations

304743 22 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

4443 citing authors

#	Article	IF	CITATIONS
1	MnCo ₂ O ₄ Spiny Microspheres as Polysulfide Anchors and Conversion Catalysts for High-Performance Li–S Batteries. Energy & Description 2022, 36, 2202-2211.	5.1	8
2	Influence of lithium metal anode coated with a composite quasi-solid electrolyte on stabilizing the interface of all-solid-state battery. Ionics, 2022, 28, 2649-2660.	2.4	2
3	Graphene anchored mesoporous MnO2 nanostructures as stable and high-performance anode materials for Li-ion batteries. Electrochimica Acta, 2022, 414, 140164.	5.2	14
4	The Si3N4/MoS2 hetero-structure as an effective polysulfide regulator for high-performance lithium-sulfur battery. Applied Materials Today, 2021, 22, 100916.	4.3	11
5	Facile Approach To Prepare Multiple Heteroatom-Doped Carbon Material from Bagasse and Its Applications toward Lithium-lon and Lithium–Sulfur Batteries. Energy & Dels, 2021, 35, 8286-8294.	5.1	28
6	Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application. Bulletin of Materials Science, 2021, 44, 1.	1.7	7
7	Improving the Electrochemical Performance of Li ₂ RuO ₃ through Chemical Substitution: A Case Study of (<i>x</i>)LiCoO ₂ â€(1â€ <i>x</i>)Li ₂ RuO ₃ Solid Solution (<i>x</i> àâ‰6.4). ChemElectroChem, 2020, 7, 328-335.	3.4	15
8	Nanocrystalline silicon embedded highly conducting phosphorus doped silicon thin film as high power lithium ion battery anode. Electrochimica Acta, 2020, 330, 135318.	5.2	22
9	Tuning of Ni, Mn, and Co (NMC) Content in 0.4(LiNi _{<i>x</i>} O _{<i>x</i>} A·0.4(Li _{<i>x</i>} A·0.4(Li ₂ toward Stable High-Capacity Lithium-Rich Cathode Materials. ACS Applied Energy Materials, 2020, 3, 10872-10881.	sub>MnO<	ksub>3
10	Proliferation of Atomic Shuffling through Mechanical Stress on Cationic Disorder Li ₄ FeMoO ₆ as a Cathode Material for a Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 8716-8724.	5.1	6
11	Hollow Co ₃ O ₄ Microspheres Grafted with Nitrogen-Doped Carbon Nanotubes as Efficient Sulfur Host for High Performing Lithium–Sulfur Batteries. Energy & Fuels, 2020, 34, 16810-16818.	5.1	14
12	Template assisted synthesis of <scp>Sn@C</scp> microspheres and <scp>SnO₂@C</scp> micro bowls as anode for <scp>Liâ€lon</scp> batteries. Energy Storage, 2020, 2, e152.	4.3	3
13	MoS ₂ Nanoflower-Derived Interconnected CoMoO ₄ Nanoarchitectures as a Stable and High Rate Performing Anode for Lithium-Ion Battery Applications. ACS Applied Materials & Amp; Interfaces, 2020, 12, 11511-11521.	8.0	50
14	Synthesis and investigation of electrochemical performance of mixed valent Li4FeMoO6 as positive electrode material in rechargeable lithium ion batteries. Journal of Power Sources, 2019, 436, 226870.	7.8	13
15	Mo3Nb2O14: A high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes. Journal of Power Sources, 2019, 436, 226850.	7.8	22
16	Effect of heat treatment temperature on energy storage performance of PAN coâ€MMA based carbon nanofibers as freestanding lithium ion batteries anode. Energy Storage, 2019, 1, e89.	4.3	18
17	MoS2 anchored carbon nitride based mesoporous material as a polysulfide barrier for high capacity lithium-sulfur battery. Journal of Electroanalytical Chemistry, 2019, 843, 37-46.	3.8	22
18	LAGP Li Interface Modification through a Wetted Polypropylene Interlayer for Solid State Li-Ion and Liâ€"S batteries. ACS Applied Energy Materials, 2019, 2, 4118-4125.	5.1	46

#	Article	IF	Citations
19	Ordered 1D and 3D mesoporous Co3O4 structures: Effect of morphology on Li-ion storage and high rate performance. Electrochimica Acta, 2019, 310, 184-194.	5.2	14
20	Melamine assisted liquid exfoliation approach for the synthesis of nitrogen doped graphene-like carbon nano sheets from bio-waste bagasse material and its application towards high areal density Li-S batteries. Carbon, 2019, 144, 582-590.	10.3	61
21	Silica template assisted synthesis of ordered mesoporous $\hat{l}^2\hat{a}\in MnO2$ nanostructures and their performance evaluation as negative electrode in Li-ion batteries. Electrochimica Acta, 2018, 292, 532-539.	5.2	23
22	Permselective SPEEK/Nafion Composite-Coated Separator as a Potential Polysulfide Crossover Barrier Layer for Li–S Batteries. ACS Applied Materials & Discrete Ramp; Interfaces, 2018, 10, 19721-19729.	8.0	81
23	[Co(salen)] derived Co/Co3O4 nanoparticle@carbon matrix as high-performance electrode for energy storage applications. Journal of Power Sources, 2017, 344, 103-110.	7.8	46
24	Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ substitution. Electrochimica Acta, 2017, 256, 10-18.	5.2	39
25	High rate capability and cyclic stability of hierarchically porous Tin oxide (IV)–carbon nanofibers as anode in lithium ion batteries. Applied Nanoscience (Switzerland), 2017, 7, 449-462.	3.1	18
26	Improving Electrochemical Stability by Transition Metal Cation Doping for Manganese in Lithium-rich Layered Cathode, Li 1.2 Ni 0.13 Co 0.13 Mn 0.54-x M x O 2 (M = Co, Cr and Fe). Electrochimica Acta, 2017, 249, 377-386.	5.2	35
27	A Convenient Synthesis Route for Co ₃ O ₄ Hollow Microspheres and Their Application as a High Performing Anode in Li-Ion Batteries. ACS Omega, 2017, 2, 7647-7657.	3.5	16
28	State of health monitoring of Li-ion batteries using dynamic resistance mapping and regression. CSI Transactions on ICT, 2016, 4, 23-28.	1.0	2
29	Constraining polyselenide formation in ether based electrolytes through confinement of Se in microporous carbon matrix for Li-Se batteries. Electrochimica Acta, 2016, 219, 295-304.	5.2	57
30	A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li 1.2 Ni 0.13 M 0.13 Mn 0.54 O 2 where MÂ=ÂFe or Co. Journal of Power Sources, 2016, 324, 462-474.	7.8	59
31	Self-assembled lamellar alpha-molybdenum trioxide as high performing anode material for lithium-ion batteries. Journal of Power Sources, 2015, 278, 630-638.	7.8	36
32	Visible light assisted photocatalytic degradation of organic dyes on TiO2–CNT nanocomposites. Journal of Sol-Gel Science and Technology, 2015, 73, 72-82.	2.4	25
33	Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li ₄ FeSbO ₆ . Journal of the American Chemical Society, 2015, 137, 4804-4814.	13.7	155
34	Origin of voltage decay in high-capacity layered oxide electrodes. Nature Materials, 2015, 14, 230-238.	27.5	757
35	Synthesis of Hierarchically Porous SnO ₂ Microspheres and Performance Evaluation as Li-lon Battery Anode by Using Different Binders. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16556-16564.	8.0	66
36	Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Materials, 2013, 12, 827-835.	27.5	1,192

3

#	Article	lF	CITATIONS
37	High Performance Li ₂ Ru _{1–<i>y</i>} Mn _{<i>y</i>} O ₃ (0.2 â%) Chemistry of Materials, 2013, 25, 1121-1131.	Þ¤Tj ETQq1 6.7	1 0.78431 365
38	Li4NiTeO6 as a positive electrode for Li-ion batteries. Chemical Communications, 2013, 49, 11376.	4.1	96
39	Synthesis of new (Bi, La)3MSb2O11 phases (M = Cr, Mn, Fe) with KSbO3-type structure and their magnetic and photocatalytic properties. Bulletin of Materials Science, 2011, 34, 271-277.	1.7	7
40	Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures. Journal of Chemical Sciences, 2011, 123, 517-524.	1.5	46
41	Synthesis and photocatalytic properties of Ag[Li1/3Ru2/3]O2: A new delafossite oxide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 141-146.	3.5	15
42	Perovskite and Pyrochlore Modifications of Pb2MnReO6:Â Synthesis, Structure, and Electronic Properties. Chemistry of Materials, 2003, 15, 668-674.	6.7	33
43	Pb2FeReO6: new defect pyrochlore oxide with a geometrically frustrated Fe/Re sublatticeElectronic supplementary information (ESI) available: powder XRD patterns of pyrochlores Pb2FeReO6.1 and Pb2FeReO5.81. See http://www.rsc.org/suppdata/jm/b3/b304118m/. Journal of Materials Chemistry, 2003, 13, 2011.	6.7	16