Thomas Lectka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659512/publications.pdf

Version: 2024-02-01

172457 168389 2,954 70 29 citations h-index papers

g-index 77 77 77 2222 docs citations times ranked citing authors all docs

53

#	Article	IF	CITATIONS
1	Spectroscopic and Crystallographic Characterization of the R ₃ N ⁺ â-'Câ-'Hâ<â<3	3.3	5
2	Hydroxy-directed fluorination of remote unactivated C(sp ³)–H bonds: a new age of diastereoselective radical fluorination. Chemical Science, 2022, 13, 7007-7013.	7.4	14
3	Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. Journal of Organic Chemistry, 2022, 87, 8413-8419.	3.2	2
4	The Close Interaction of a Câ^F Bond with an Amide Carbonyl: Crystallographic and Spectroscopic Characterization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
5	Cooperative Noncovalent Interactions Lead to a Highly Diastereoselective Sulfonyl-Directed Fluorination of Steroidal $\hat{l}\pm,\hat{l}^2$ -Unsaturated Hydrazones. Journal of Organic Chemistry, 2021, 86, 1300-1307.	3.2	0
6	Arene Amination Instead of Fluorination: Substitution Pattern Governs the Reactivity of Dialkoxybenzenes with Selectfluor. Journal of Organic Chemistry, 2021, 86, 5771-5777.	3.2	7
7	Structural proof of a [C–F–C]+ fluoronium cation. Nature Communications, 2021, 12, 5275.	12.8	9
8	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Inorganic Chemistry, 2021, 60, 17419-17425.	4.0	12
9	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Journal of Organic Chemistry, 2021, 86, 16213-16219.	3.2	15
10	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Organic Letters, 2021, 23, 9013-9019.	4.6	9
11	Quest for a Symmetric [C–F–C] ⁺ Fluoronium Ion in Solution: A Winding Path to Ultimate Success. Accounts of Chemical Research, 2020, 53, 265-275.	15.6	6
12	DFT Case Study of the Mechanism of a Metal-Free Oxygen Atom Insertion into a <i>p</i> Quinone Methide C(sp ³)–C(sp ²) Bond. Journal of Organic Chemistry, 2020, 85, 10110-10117.	3.2	0
13	Carbonyl-Directed Aliphatic Fluorination: A Special Type of Hydrogen Atom Transfer Beats Out Norrish II. Journal of the American Chemical Society, 2020, 142, 14710-14724.	13.7	37
14	Close Amide NH···F Hydrogen Bonding Interactions in 1,8-Disubstituted Naphthalenes. Journal of Organic Chemistry, 2020, 85, 6195-6200.	3.2	11
15	Switching a HO···π Interaction to a Nonconventional OH···π Hydrogen Bond: A Completed Crystallographic Puzzle. Journal of Organic Chemistry, 2020, 85, 9801-9807.	3.2	6
16	Site-Selective Photochemical Fluorination of Ketals: Unanticipated Outcomes in Selectivity and Stability. Journal of Organic Chemistry, 2020, 85, 2855-2864.	3.2	27
17	Discovery and Mechanistic Study of a Totally Organic C _(aryl) –C _(alkyl) Oxygen Insertion Reaction. Journal of Organic Chemistry, 2019, 84, 14349-14353.	3.2	4
18	A Protonated Quinone Methide Stabilized by a Combination of Partial Aromatization and π-Interaction: Spectroscopic and Crystallographic Analysis. Journal of Organic Chemistry, 2019, 84, 8284-8288.	3.2	3

#	Article	IF	CITATIONS
19	Energy- and conformer-dependent excited-state relaxation of an $\langle i \rangle E \langle i \rangle / \langle i \rangle Z \langle i \rangle$ photoswitchable thienyl-ethene. Physical Chemistry Chemical Physics, 2019, 21, 14440-14452.	2.8	3
20	A Case of Serendipity: Synthesis, Characterization, and Unique Chemistry of a Stable, Ring-Unsubstituted Aliphatic <i>p</i> -Quinone Methide. Organic Letters, 2019, 21, 2326-2329.	4.6	11
21	Synthesis and X-Ray crystallography of a substituted trityl fluoride: Ordering power of a C-F bond. Journal of Fluorine Chemistry, 2019, 228, 109377.	1.7	1
22	Spectroscopic Characterization of a [Câ^Fâ^C] + Fluoronium Ion in Solution. Angewandte Chemie, 2018, 130, 1942-1945.	2.0	11
23	Spectroscopic Characterization of a [Câ^Fâ^C] ⁺ Fluoronium Ion in Solution. Angewandte Chemie - International Edition, 2018, 57, 1924-1927.	13.8	20
24	Sensitized Aliphatic Fluorination Directed by Terpenoidal Enones: A "Visible Light―Approach. Journal of Organic Chemistry, 2018, 83, 1565-1575.	3.2	26
25	Fluor in einer Câ€Fâ€Bindung als Schlüssel für die Kögbildung. Angewandte Chemie, 2018, 130, 2806-2815	. 2.0	10
26	Fluorine in a Câ^'F Bond as the Key to Cage Formation. Angewandte Chemie - International Edition, 2018, 57, 2758-2766.	13.8	23
27	Fluorofunctionalization of C╀ Bonds with Selectfluor: Synthesis of β-Fluoropiperazines through a Substrate-Guided Reactivity Switch. Journal of Organic Chemistry, 2018, 83, 14234-14244.	3.2	24
28	Catalyzed and Promoted Aliphatic Fluorination. Journal of Organic Chemistry, 2018, 83, 8803-8814.	3.2	40
29	Multiple Enone-Directed Reactivity Modes Lead to the Selective Photochemical Fluorination of Polycyclic Terpenoid Derivatives. Journal of the American Chemical Society, 2017, 139, 2208-2211.	13.7	64
30	Intermolecular Aliphatic C–F···H–C Interaction in the Presence of "Stronger―Hydrogen Bond Acceptors: Crystallographic, Computational, and IR Studies. Journal of Organic Chemistry, 2017, 82, 3996-4000.	3.2	18
31	Through-Space Activation Can Override Substituent Effects in Electrophilic Aromatic Substitution. Journal of the American Chemical Society, 2017, 139, 14913-14916.	13.7	19
32	Ketones as directing groups in photocatalytic sp ³ C–H fluorination. Chemical Science, 2017, 8, 6918-6923.	7.4	75
33	Titelbild: Positioning a Carbon–Fluorine Bond over the π Cloud of an Aromatic Ring: A Different Type of Arene Activation (Angew. Chem. 29/2016). Angewandte Chemie, 2016, 128, 8269-8269.	2.0	O
34	Positioning a Carbon–Fluorine Bond over the Ï€â€Cloud of an Aromatic Ring: A Different Type of Arene Activation. Angewandte Chemie - International Edition, 2016, 55, 8266-8269.	13.8	35
35	Aminofluorination of Cyclopropanes: A Multifold Approach through a Common, Catalytically Generated Intermediate. Journal of the American Chemical Society, 2016, 138, 6598-6609.	13.7	139
36	Direct, visible light-sensitized benzylic C H fluorination of peptides using dibenzosuberenone: selectivity for phenylalanine-like residues. Tetrahedron, 2016, 72, 6031-6036.	1.9	45

#	Article	IF	CITATIONS
37	The close interaction of a C F bond with a carbonyl π–system: Attractive, repulsive, or both?. Journal of Fluorine Chemistry, 2016, 188, 126-130.	1.7	12
38	A C–F Bond Directed Diels–Alder Reaction. Journal of Organic Chemistry, 2016, 81, 8087-8090.	3.2	13
39	Positioning a Carbon–Fluorine Bond over the Ï€â€Cloud of an Aromatic Ring: A Different Type of Arene Activation. Angewandte Chemie, 2016, 128, 8406-8409.	2.0	11
40	Unstrained C–C bond activation and directed fluorination through photocatalytically-generated radical cations. Chemical Science, 2015, 6, 5225-5229.	7.4	49
41	Synthesis of a Tight Intramolecular OH···Olefin Interaction, Probed by IR, ¹ H NMR, and Quantum Chemistry. Journal of Organic Chemistry, 2015, 80, 4803-4807.	3.2	11
42	Site \hat{s} elective Approach to $\hat{l}^2\hat{a}$ Fluorination: Photocatalyzed Ring Opening of Cyclopropanols. Chemistry - A European Journal, 2015, 21, 8060-8063.	3.3	102
43	Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid. Journal of the American Chemical Society, 2015, 137, 14329-14340.	13.7	11
44	Search for a Symmetrical C–F–C Fluoronium Ion in Solution: Kinetic Isotope Effects, Synthetic Labeling, and Computational, Solvent, and Rate Studies. Journal of the American Chemical Society, 2015, 137, 11476-11490.	13.7	22
45	Modulating "Jousting―C–FH–C Interactions with a Bit of Hydrogen Bonding. Journal of Organic Chemistry, 2014, 79, 1-6.	3.2	51
46	A photocatalyzed aliphatic fluorination. Chemical Science, 2014, 5, 1175-1178.	7.4	121
47	A cooperative allylic fluorination: combination of nucleophilic and electrophilic fluorine sources. Tetrahedron Letters, 2014, 55, 4576-4580.	1.4	29
48	Triethylborane-Initiated Radical Chain Fluorination: A Synthetic Method Derived from Mechanistic Insight. Journal of Organic Chemistry, 2014, 79, 8895-8899.	3.2	59
49	Search for a Strong, Virtually "Noâ€Shift―Hydrogen Bond: A Cage Molecule with an Exceptional OHâ‹â‹â‹ Interaction. Angewandte Chemie - International Edition, 2014, 53, 8924-8928.	F 13.8	41
50	Direct, Catalytic Monofluorination of sp ³ Câ€"H Bonds: A Radical-Based Mechanism with Ionic Selectivity. Journal of the American Chemical Society, 2014, 136, 9780-9791.	13.7	163
51	Vibrational predissociation spectroscopy of Ar-tagged, trisubstituted silyl cations. Chemical Physics Letters, 2013, 568-569, 9-13.	2.6	5
52	Iron(II)-Catalyzed Benzylic Fluorination. Organic Letters, 2013, 15, 1722-1724.	4.6	145
53	Evidence for a Symmetrical Fluoronium Ion in Solution. Science, 2013, 340, 57-60.	12.6	78
54	A Polycomponent Metalâ€Catalyzed Aliphatic, Allylic, and Benzylic Fluorination. Angewandte Chemie - International Edition, 2012, 51, 10580-10583.	13.8	226

#	Article	IF	CITATIONS
55	Interaction of a C–F Bond with the π-System of a C╀ Bond or "Head On―with a Proximate C–H Bond. Journal of Organic Chemistry, 2012, 77, 1605-1609.	3.2	28
56	NH+–F Hydrogen Bonding in a Fluorinated "Proton Sponge―Derivative: Integration of Solution, Solid-State, Gas-Phase, and Computational Studies. Journal of Organic Chemistry, 2011, 76, 7975-7984.	3.2	31
57	A Mechanistic Study on the Catalytic, Asymmetric α-Bromination of Acid Chlorides. European Journal of Organic Chemistry, 2007, 2007, 1091-1100.	2.4	28
58	Recent Developments in Catalytic, Asymmetric αâ∈Halogenation: A New Frontier in Asymmetric Catalysis. European Journal of Organic Chemistry, 2005, 2005, 475-479.	2.4	121
59	Reactive Ketenes through a Carbonate/Amine Shuttle Deprotonation Strategy:  Catalytic, Enantioselective α-Bromination of Acid Chlorides. Organic Letters, 2001, 3, 2049-2051.	4.6	87
60	Strong Hydrogen Bonding to the Amide Nitrogen Atom in an "Amide Proton Sponge― Consequences for Structure and Reactivity. Angewandte Chemie - International Edition, 1999, 38, 798-800.	13.8	54
61	Nucleophilic Metal Complexes as Acylation Catalysts:  Solvent-Dependent "Switch―Mechanisms Leading to the First Catalyzed Staudinger Reaction. Organic Letters, 1999, 1, 1985-1988.	4.6	43
62	Nucleophilic Catalysis of Amide Isomerization. Journal of the American Chemical Society, 1999, 121, 7963-7964.	13.7	21
63	"Orthogonal―Lewis Acids: Catalyzed Ring Opening and Rearrangement of Acylaziridines. Journal of Organic Chemistry, 1998, 63, 4568-4569.	3.2	129
64	Intramolecular Catalysis of Amide Isomerization:  Kinetic Consequences of the 5-NH- -Na Hydrogen Bond in Prolyl Peptides. Journal of the American Chemical Society, 1998, 120, 10660-10668.	13.7	88
65	A Novel Synthesis of \hat{l}_{\pm} -Amino Acid Derivatives through Catalytic, Enantioselective Ene Reactions of \hat{l}_{\pm} -Imino Esters. Journal of the American Chemical Society, 1998, 120, 11006-11007.	13.7	141
66	Câ^'F Bond Activation by Aryl Carbocations:Â Conclusive Intramolecular Fluoride Shifts between Carbon Atoms in Solution and the First Examples of Intermolecular Fluoride Ion Abstractions. Journal of the American Chemical Society, 1997, 119, 4319-4320.	13.7	62
67	Three-center, two-electron C-H-C bonds in organic chemistry. Accounts of Chemical Research, 1992, 25, 47-53.	15.6	88
68	The in-bicyclo [4.4.4]-1-tetradecyl cation: a stable substance with a three-center, two-electron carbon-hydrogen-carbon bond. Journal of the American Chemical Society, 1989, 111, 8867-8872.	13.7	60
69	Fluorine: A Very Special Element and Its Very Special Impacts on Chemistry. Organometallics, 0, , .	2.3	2
70	The Close Interaction of a Câ€F Bond with an Amide Carbonyl: Crystallographic and Spectroscopic Characterization. Angewandte Chemie, 0, , .	2.0	0