
Thijs Dhollander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 2019, 202, 116137.	4.2	1,555
2	Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage, 2014, 103, 411-426.	4.2	1,063
3	Fibre-specific white matter reductions in Alzheimer's disease and mild cognitive impairment. Brain, 2018, 141, 888-902.	7.6	226
4	Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of Aging, 2015, 36, 2107-2121.	3.1	183
5	Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. NeuroImage, 2015, 123, 89-101.	4.2	128
6	QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. Nature Methods, 2021, 18, 775-778.	19.0	127
7	Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury. Brain, 2012, 135, 1293-1307.	7.6	117
8	Fixel-based Analysis of Diffusion MRI: Methods, Applications, Challenges and Opportunities. NeuroImage, 2021, 241, 118417.	4.2	117
9	Reduced White Matter Fiber Density in Autism Spectrum Disorder. Cerebral Cortex, 2019, 29, 1778-1788.	2.9	67
10	Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis. NeuroImage, 2012, 61, 633-650.	4.2	65
11	Fibre-specific white matter changes in multiple sclerosis patients with optic neuritis. NeuroImage: Clinical, 2018, 17, 60-68.	2.7	56
12	Pervasive White Matter Fiber Degeneration in Ischemic Stroke. Stroke, 2020, 51, 1507-1513.	2.0	53
13	Early childhood development of white matter fiber density and morphology. NeuroImage, 2020, 210, 116552.	4.2	52
14	Human Olfaction without Apparent Olfactory Bulbs. Neuron, 2020, 105, 35-45.e5.	8.1	48
15	White matter alterations at pubertal onset. NeuroImage, 2017, 156, 286-292.	4.2	47
16	Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis. PLoS ONE, 2013, 8, e62133.	2.5	43
17	Modeling brain dynamics after tumor resection using The Virtual Brain. NeuroImage, 2020, 213, 116738.	4.2	41
18	The associative-semantic network for words and pictures: Effective connectivity and graph analysis. Brain and Language, 2013, 127, 264-272.	1.6	40

THIJS DHOLLANDER

#	Article	IF	CITATIONS
19	Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography. NeuroImage, 2014, 94, 312-336.	4.2	37
20	Connectomes from streamlines tractography: Assigning streamlines to brain parcellations is not trivial but highly consequential. NeuroImage, 2019, 199, 160-171.	4.2	31
21	Navigating the link between processing speed and network communication in the human brain. Brain Structure and Function, 2021, 226, 1281-1302.	2.3	23
22	Test–retest reliability and longâ€ŧerm stability of threeâ€ŧissue constrained spherical deconvolution methods for analyzing diffusion MRI data. Magnetic Resonance in Medicine, 2020, 84, 2161-2173.	3.0	21
23	In vivo microstructural heterogeneity of white matter lesions in healthy elderly and Alzheimer's disease participants using tissue compositional analysis of diffusion MRI data. NeuroImage: Clinical, 2020, 28, 102479.	2.7	19
24	Three-tissue compositional analysis reveals in-vivo microstructural heterogeneity of white matter hyperintensities following stroke. NeuroImage, 2020, 218, 116869.	4.2	19
25	Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. NeuroImage, 2020, 209, 116530.	4.2	17
26	Investigating the microstructural properties of normal-appearing white matter (NAWM) preceding conversion to white matter hyperintensities (WMHs) in stroke survivors. NeuroImage, 2021, 232, 117839.	4.2	16
27	Advanced MRI analysis to detect white matter brain injury in growth restricted newborn lambs. NeuroImage: Clinical, 2019, 24, 101991.	2.7	15
28	Feasibility and Advantages of Diffusion Weighted Imaging Atlas Construction in Q-Space. Lecture Notes in Computer Science, 2011, 14, 166-173.	1.3	13
29	Dynamic analysis of fMRI activation during epileptic spikes can help identify the seizure origin. Epilepsia, 2020, 61, 2558-2571.	5.1	12
30	Fibre-specific laterality of white matter in left and right language dominant people. NeuroImage, 2021, 230, 117812.	4.2	12
31	Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. NeuroImage: Clinical, 2022, 33, 102927.	2.7	10
32	Prefronto-Striatal Structural Connectivity Mediates Adult Age Differences in Action Selection. Journal of Neuroscience, 2021, 41, 331-341.	3.6	9
33	Maturation and interhemispheric asymmetry in neurite density and orientation dispersion in early childhood. NeuroImage, 2020, 221, 117168.	4.2	8
34	The Structural Connectome and Internalizing and Externalizing Symptoms at 7 and 13 Years in Individuals Born Very Preterm and Full Term. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 424-434.	1.5	7
35	Impact of long- and short-range fibre depletion on the cognitive deficits of fronto-temporal dementia. ELife, 2022, 11, .	6.0	7
36	Review: Using diffusion-weighted magnetic resonance imaging techniques to explore the microstructure and connectivity of subcortical white matter tracts in the human auditory system. Hearing Research, 2019, 377, 1-11.	2.0	6

THIJS DHOLLANDER

#	Article	IF	CITATIONS
37	Fiber-Specific Changes in White Matter Microstructure in Individuals With X-Linked Auditory Neuropathy. Ear and Hearing, 2020, 41, 1703-1714.	2.1	5
38	A connectomeâ€based approach to assess motor outcome after neonatal arterial ischemic stroke. Annals of Clinical and Translational Neurology, 2021, 8, 1024-1037.	3.7	5
39	Structural perisylvian asymmetry in naturally occurring atypical language dominance. Brain Structure and Function, 2022, 227, 573-586.	2.3	5
40	Brain tissue microstructural and free-water composition 13 years after very preterm birth. NeuroImage, 2022, 254, 119168.	4.2	5
41	Reply: Cortical tau pathology: a major player in fibre-specific white matter reductions in Alzheimer's disease?. Brain, 2018, 141, e45-e45.	7.6	4
42	Individual differences in attentional lapses are associated with fiberâ€specific white matter microstructure in healthy adults. Psychophysiology, 2021, 58, e13871.	2.4	4
43	Structural brain connectivity in children after neonatal stroke: A whole-brain fixel-based analysis. NeuroImage: Clinical, 2022, 34, 103035.	2.7	4
44	Atlas-Guided Global Tractography: Imposing a Prior on the Local Track Orientation. Mathematics and Visualization, 2014, , 115-123.	0.6	3
45	Groupwise Deformable Registration of Fiber Track Sets Using Track Orientation Distributions. Mathematics and Visualization, 2014, , 151-161.	0.6	2
46	[ICâ€₽â€165]: FIXELâ€BASED ANALYSIS OF FIBRE TRACT DEGENERATION IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P124.	0.8	1
47	P2â€382: ADVANCED DIFFUSION MRI ENABLES <i>IN VIVO</i> INVESTIGATION OF MICROSTRUCTURAL HETEROGENEITY OF WHITE MATTER HYPERINTENSITIES IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P843.	0.8	1
48	[P3–326]: FIXELâ€BASED ANALYSIS OF FIBRE TRACT DEGENERATION IN MILD COGNITIVE IMPAIRMENT AND ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1074.	0.8	0
49	ICâ€Pâ€184: ADVANCED DIFFUSION MRI ENABLES IN VIVO INVESTIGATION OF MICROSTRUCTURAL HETEROGENI OF WHITE MATTER HYPERINTENSITIES IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P153.	EITY 0.8	0
50	P4â€580: GLOBAL WHITE MATTER FIBRE DEGENERATION AFTER ISCHAEMIC STROKE. Alzheimer's and Dementia, 2019, 15, P1543.	0.8	0
51	Diffusion MRI-based connectivity. , 2022, , 223-244.		0
52	Modeling brain dynamics after tumor resection using The Virtual Brain. Frontiers in Neuroscience, 0, 13, .	2.8	0
53	Continued white matter fibre degeneration over 3 years after ischemic stroke. Alzheimer's and Dementia, 2021, 17, .	0.8	0