Charles M Rice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659106/publications.pdf

Version: 2024-02-01

191 papers

35,547 citations

73 h-index

9786

177 g-index

209 all docs 209 docs citations

209 times ranked 42516 citing authors

#	Article	IF	CITATIONS
1	System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell Reports Medicine, 2022, 3, 100522.	6.5	24
2	Lung type II alveolar epithelial cells collaborate with CCR2+ inflammatory monocytes in host defense against poxvirus infection. Nature Communications, 2022, 13, 1671.	12.8	10
3	Proteomic elucidation of the targets and primary functions of the picornavirus 2A protease. Journal of Biological Chemistry, 2022, 298, 101882.	3.4	10
4	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	14.3	86
5	Mouse characteristics that affect establishing xenografts from hepatocellular carcinoma patient biopsies in the United States. Cancer Medicine, 2022, 11, 602-617.	2.8	1
6	Neutralization and receptor use of infectious culture–derived rat hepacivirus as a model for HCV. Hepatology, 2022, 76, 1506-1519.	7.3	8
7	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
8	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	59
9	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	12.4	379
10	TMEM41B Is a Pan-flavivirus Host Factor. Cell, 2021, 184, 133-148.e20.	28.9	127
11	Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Cell, 2021, 184, 120-132.e14.	28.9	328
12	A selectable, plasmid-based system to generate CRISPR/Cas9 gene edited and knock-in mosquito cell lines. Scientific Reports, 2021, 11, 736.	3.3	8
13	Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. Journal of Experimental Medicine, 2021, 218, .	8.5	130
14	Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host and Microbe, 2021, 29, 267-280.e5.	11.0	127
15	Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion. Cell Systems, 2021, 12, 210-219.e3.	6.2	10
16	Decoupling expression and editing preferences of ADAR1 p150 and p110 isoforms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	52
17	Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. Journal of Experimental Medicine, 2021, 218, .	8.5	25
18	Argonaute-CLIP delineates versatile, functional RNAi networks in Aedes aegypti, a major vector of human viruses. Cell Host and Microbe, 2021, 29, 834-848.e13.	11.0	6

#	Article	IF	CITATIONS
19	DRUL for school: Opening Pre-K with safe, simple, sensitive saliva testing for SARS-CoV-2. PLoS ONE, 2021, 16, e0252949.	2.5	5
20	Pathogenesis, MicroRNAâ€122 Geneâ€Regulation, and Protective Immune Responses After Acute Equine Hepacivirus Infection. Hepatology, 2021, 74, 1148-1163.	7.3	14
21	Identification of Novel Therapeutic Targets for Fibrolamellar Carcinoma Using Patient-Derived Xenografts and Direct-from-Patient Screening. Cancer Discovery, 2021, 11, 2544-2563.	9.4	27
22	Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 595, 426-431.	27.8	610
23	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	28.9	98
24	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
25	Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature, 2021, 599, 465-470.	27.8	129
26	Controlled Human Infection Model â€" Fast Track to HCV Vaccine?. New England Journal of Medicine, 2021, 385, 1235-1240.	27.0	22
27	E3 ubiquitin ligase Mindbomb 1 facilitates nuclear delivery of adenovirus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	8
28	Replication and single-cycle delivery of SARS-CoV-2 replicons. Science, 2021, 374, 1099-1106.	12.6	49
29	A CRISPR Activation Screen Identifies an Atypical Rho GTPase That Enhances Zika Viral Entry. Viruses, 2021, 13, 2113.	3.3	10
30	Development of antibody-based assays for high throughput discovery and mechanistic study of antiviral agents against yellow fever virus. Antiviral Research, 2020, 182, 104907.	4.1	4
31	Defining the proteolytic landscape during enterovirus infection. PLoS Pathogens, 2020, 16, e1008927.	4.7	36
32	Downregulation of IGF2 expression in third trimester placental tissues from Zika virus infected women in Brazil. Journal of Infection, 2020, 81, 766-775.	3.3	3
33	Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Research, 2020, 183, 104939.	4.1	14
34	Equine pegiviruses cause persistent infection of bone marrow and are not associated with hepatitis. PLoS Pathogens, 2020, 16, e1008677.	4.7	17
35	RTP4 inhibits IFN-I response and enhances experimental cerebral malaria and neuropathology. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19465-19474.	7.1	31
36	Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.	27.8	1,742

3

#	Article	IF	CITATIONS
37	LY6E impairs coronavirus fusion and confers immune control of viral disease. Nature Microbiology, 2020, 5, 1330-1339.	13.3	170
38	Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Journal of Experimental Medicine, 2020, 217, .	8. 5	503
39	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,749
40	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,983
41	Liver-expressed <i>Cd302</i> and <i>Cr11</i> limit hepatitis C virus cross-species transmission to mice. Science Advances, 2020, 6, .	10.3	23
42	Identification of interferon-stimulated genes that attenuate Ebola virus infection. Nature Communications, 2020, 11, 2953.	12.8	37
43	A Combination of Human Broadly Neutralizing Antibodies against Hepatitis B Virus HBsAg with Distinct Epitopes Suppresses Escape Mutations. Cell Host and Microbe, 2020, 28, 335-349.e6.	11.0	48
44	Expansion, in vivo–ex vivo cycling, and genetic manipulation of primary human hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1678-1688.	7.1	41
45	Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nature Genetics, 2020, 52, 138-145.	21.4	73
46	A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7981-7989.	7.1	24
47	Structural basis for Zika envelope domain III recognition by a germline version of a recurrent neutralizing antibody. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9865-9875.	7.1	7
48	Stem cell-derived polarized hepatocytes. Nature Communications, 2020, 11, 1677.	12.8	60
49	Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology, 2020, 219, .	5.2	20
50	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	6.0	1,239
51	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0
52	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0
53	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0
54	Defining the proteolytic landscape during enterovirus infection. , 2020, 16, e1008927.		0

#	Article	IF	Citations
55	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	8.5	41
56	Replicons of a Rodent Hepatitis C Model Virus Permit Selection of Highly Permissive Cells. Journal of Virology, 2019, 93, .	3.4	13
57	Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. Journal of Experimental Medicine, 2019, 216, 2057-2070.	8.5	127
58	Inherited IL-18BP deficiency in human fulminant viral hepatitis. Journal of Experimental Medicine, 2019, 216, 1777-1790.	8.5	70
59	ZAP's stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathogens, 2019, 15, e1007798.	4.7	37
60	HCV Molecular Virology and Animal Models. Topics in Medicinal Chemistry, 2019, , 29-68.	0.8	2
61	Characterization of Novel Splice Variants of Zinc Finger Antiviral Protein (ZAP). Journal of Virology, 2019, 93, .	3.4	61
62	Identification and transcriptome analysis of erythroblastic island macrophages. Blood, 2019, 134, 480-491.	1.4	104
63	A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape. Nature Immunology, 2019, 20, 493-502.	14.5	139
64	Taming a beast: lessons from the domestication of hepatitis C virus. Current Opinion in Virology, 2019, 35, 27-34.	5.4	10
65	Visualization of Positive and Negative Sense Viral RNA for Probing the Mechanism of Direct-Acting Antivirals against Hepatitis C Virus. Viruses, 2019, 11, 1039.	3.3	14
66	IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nature Chemical Biology, 2019, 15, 259-268.	8.0	169
67	Antiviral resistance of stem cells. Current Opinion in Immunology, 2019, 56, 50-59.	5 . 5	22
68	Stem Cell–Derived Culture Models of Hepatitis E Virus Infection. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031799.	6.2	16
69	Investigating the functional link between TMEM165 and SPCA1. Biochemical Journal, 2019, 476, 3281-3293.	3.7	12
70	Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Research, 2018, 248, 53-62.	2.2	124
71	Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell, 2018, 172, 811-824.e14.	28.9	375
72	Genetic Variation at IFNL4 Influences Extrahepatic Interferon-Stimulated Gene Expression in Chronic HCV Patients. Journal of Infectious Diseases, 2018, 217, 650-655.	4.0	17

#	Article	IF	Citations
73	Pan-Genotype Hepatitis E Virus Replication in Stem Cell–Derived Hepatocellular Systems. Gastroenterology, 2018, 154, 663-674.e7.	1.3	46
74	Interferon-Stimulated Gene (ISG)-Expression Screening Reveals the Specific Antibunyaviral Activity of ISG20. Journal of Virology, $2018,92,.$	3.4	48
75	Viral persistence, liver disease, and host response in a hepatitis C–like virus rat model. Hepatology, 2018, 68, 435-448.	7.3	59
76	Intrinsic Immunity Shapes Viral Resistance of Stem Cells. Cell, 2018, 172, 423-438.e25.	28.9	289
77	Identification of a Small Interface between the Methyltransferase and RNA Polymerase of NS5 that is Essential for Zika Virus Replication. Scientific Reports, 2018, 8, 17384.	3.3	13
78	Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell, 2018, 175, 1591-1606.e19.	28.9	505
79	T time for <scp>ADAR</scp> : <scp>ADAR</scp> 1 is required for T cell selfâ€tolerance. EMBO Reports, 2018, 19, .	4.5	15
80	A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Reports, 2018, 25, 1385-1394.e7.	6.4	61
81	NS5A Promotes Constitutive Degradation of IP3R3 to Counteract Apoptosis Induced by Hepatitis C Virus. Cell Reports, 2018, 25, 833-840.e3.	6.4	20
82	Friend and foe, $\langle scp \rangle$ HNRNPC $\langle scp \rangle$ takes on immunostimulatory $\langle scp \rangle$ RNA $\langle scp \rangle$ s in breast cancer cells. EMBO Journal, 2018, 37, .	7.8	14
83	New Parvovirus Associated with Serum Hepatitis in Horses after Inoculation of Common Biological Product. Emerging Infectious Diseases, 2018, 24, 303-310.	4.3	75
84	Longitudinal transcriptomic characterization of the immune response to acute hepatitis C virus infection in patients with spontaneous viral clearance. PLoS Pathogens, 2018, 14, e1007290.	4.7	33
85	Male germ cells support long-term propagation of Zika virus. Nature Communications, 2018, 9, 2090.	12.8	7 5
86	Control of Human Hemoglobin Switching By LIN28B-Mediated Regulation of BCL11A Translation. Blood, 2018, 132, 412-412.	1.4	0
87	Identification, Isolation and Transcriptome Analyses of Mouse, Rat and Man Erythroblastic Island Central Macrophages. Blood, 2018, 132, 841-841.	1.4	0
88	Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. Journal of Virology, 2017, 91, .	3.4	42
89	Singleâ€molecule imaging reveals the translocation and DNA looping dynamics of hepatitis C virus NS3 helicase. Protein Science, 2017, 26, 1391-1403.	7.6	16
90	Tumor Necrosis Factor Inhibits Spread of Hepatitis C Virus Among Liver Cells, Independent From Interferons. Gastroenterology, 2017, 153, 566-578.e5.	1.3	22

#	Article	IF	Citations
91	Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico. Cell, 2017, 169, 597-609.e11.	28.9	279
92	The IFN-î»-IFN-î»R1-IL-10Rî² Complex Reveals Structural Features Underlying Type III IFN Functional Plasticity. Immunity, 2017, 46, 379-392.	14.3	89
93	Green fluorescent proteinâ€ŧagged apolipoprotein E: A useful marker for the study of hepatic lipoprotein egress. Traffic, 2017, 18, 192-204.	2.7	9
94	Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture. Nature Microbiology, 2017, 2, 16247.	13.3	52
95	Global mapping of miRNA-target interactions in cattle (Bos taurus). Scientific Reports, 2017, 7, 8190.	3.3	23
96	Differential Regulation of Lipoprotein and Hepatitis C Virus Secretion by Rab1b. Cell Reports, 2017, 21, 431-441.	6.4	28
97	Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host and Microbe, 2017, 22, 460-470.e5.	11.0	52
98	Development of a recombinant yellow fever vector expressing a HIV clade C founder envelope gp120. Journal of Virological Methods, 2017, 249, 85-93.	2.1	2
99	Argonaute CLIP Defines a Deregulated miR-122-Bound Transcriptome that Correlates with Patient Survival in Human Liver Cancer. Molecular Cell, 2017, 67, 400-410.e7.	9.7	64
100	Mouse models of acute and chronic hepacivirus infection. Science, 2017, 357, 204-208.	12.6	99
101	In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Science Translational Medicine, 2017, 9, .	12.4	133
102	A robust cell culture system supporting the complete life cycle of hepatitis B virus. Scientific Reports, 2017, 7, 16616.	3.3	61
103	Effects of amino acid substitutions in hepatitis B virus surface protein on virion secretion, antigenicity, HBsAg and viral DNA. Journal of Hepatology, 2017, 66, 288-296.	3.7	65
104	A Freeze Drying Sample Preparation Method for Correlative Light and Scanning/Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1368-1369.	0.4	0
105	Freeze Drying Method with Gaseous Nitrogen for Biological Application of Helium Ion Microcopy. Microscopy and Microanalysis, 2017, 23, 1370-1371.	0.4	1
106	TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP). PLoS Pathogens, 2017, 13, e1006145.	4.7	160
107	Loss of Sendai virus C protein leads to accumulation of RIG-I immunostimulatory defective interfering RNA. Journal of General Virology, 2017, 98, 1282-1293.	2.9	20
108	miRNA independent hepacivirus variants suggest a strong evolutionary pressure to maintain miR-122 dependence. PLoS Pathogens, 2017, 13, e1006694.	4.7	25

#	Article	IF	Citations
109	Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir. PLoS ONE, 2016, 11, e0164691.	2.5	63
110	The Spring α-Helix Coordinates Multiple Modes of HCV (Hepatitis C Virus) NS3 Helicase Action. Journal of Biological Chemistry, 2016, 291, 14499-14509.	3.4	15
111	Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. Journal of Experimental Medicine, 2016, 213, 2931-2947.	8.5	12
112	Freeze Drying Method with Gaseous Nitrogen to Preserve Fine Ultrastructure of Biological Organizations for Scanning Electron Microscopy, Helium Ion Beam Microscopy and Fluorescence Microscopy. Microscopy and Microanalysis, 2016, 22, 1142-1143.	0.4	3
113	Present and not reporting for duty: ds RNA i in mammalian cells. EMBO Journal, 2016, 35, 2499-2501.	7.8	6
114	Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Molecular Therapy, 2016, 24, 1042-1049.	8.2	91
115	Barrier-Independent, Fitness-Associated Differences in Sofosbuvir Efficacy against Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2016, 60, 3786-3793.	3.2	42
116	Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. Journal of Hepatology, 2016, 65, 334-343.	3.7	73
117	Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies. Virology, 2016, 494, 236-247.	2.4	17
118	Identification of Interferon-Stimulated Genes with Antiretroviral Activity. Cell Host and Microbe, 2016, 20, 392-405.	11.0	215
119	Hepatitis C Virus—From Discovery to Cure. JAMA - Journal of the American Medical Association, 2016, 316, 1254.	7.4	2
120	Expanding the Host Range of Hepatitis C Virus through Viral Adaptation. MBio, 2016, 7, .	4.1	13
121	Reply. Gastroenterology, 2016, 150, 1690-1691.	1.3	0
122	Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication. Journal of Virology, 2016, 90, 3212-3228.	3.4	24
123	Proteomics of HCV virions reveals an essential role for the nucleoporin Nup98 in virus morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2484-2489.	7.1	63
124	A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration. Cell Host and Microbe, 2016, 19, 409-423.	11.0	109
125	Sofosbuvir Inhibits Hepatitis E Virus Replication In Vitro and Results in an Additive Effect When Combined With Ribavirin. Gastroenterology, 2016, 150, 82-85.e4.	1.3	175
126	Mopping up miRNA: An integrated HBV transcript disrupts liver homeostasis by sequestering miR-122. Journal of Hepatology, 2016, 64, 257-259.	3.7	9

#	Article	IF	Citations
127	Repurposing an old drug: A lowâ€cost allergy medication provides new hope for hepatitis C patients. Hepatology, 2015, 62, 1911-1913.	7.3	3
128	Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors. PLoS ONE, 2015, 10, e0121099.	2.5	38
129	CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific Reports, 2015, 5, 10833.	3.3	245
130	Hepatitis B virus induces RNR-R2 expression via DNA damage response activation. Journal of Hepatology, 2015, 63, 789-796.	3.7	30
131	Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry. Cell Reports, 2015, 12, 864-878.	6.4	50
132	A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation. Cell, 2015, 160, 631-643.	28.9	137
133	Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2192-2197.	7.1	84
134	Interferons and viruses: an evolutionary arms race of molecular interactions. Trends in Immunology, 2015, 36, 124-138.	6.8	353
135	Hepatitis C Virus RNA Functionally Sequesters miR-122. Cell, 2015, 160, 1099-1110.	28.9	324
136	Identification, Molecular Cloning, and Analysis of Full-Length Hepatitis C Virus Transmitted/Founder Genotypes 1, 3, and 4. MBio, 2015, 6, e02518.	4.1	15
137	Interferon- \hat{l}^3 regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nature Immunology, 2015, 16, 838-849.	14.5	239
138	ATP-Dependent Effector-like Functions of RIG-I-like Receptors. Molecular Cell, 2015, 58, 541-548.	9.7	62
139	To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes. Trends in Cell Biology, 2015, 25, 320-329.	7.9	79
140	Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology, 2015, 62, 57-67.	7.3	22
141	Fast Hepatitis C Virus RNA Elimination and NS5A Redistribution by NS5A Inhibitors Studied by a Multiplex Assay Approach. Antimicrobial Agents and Chemotherapy, 2015, 59, 3482-3492.	3.2	20
142	SEC14L2 enables pan-genotype HCV replication in cell culture. Nature, 2015, 524, 471-475.	27.8	112
143	miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nature Communications, 2015, 6, 8864.	12.8	268
144	Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nature Protocols, 2015, 10, 2027-2053.	12.0	119

#	Article	IF	Citations
145	The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus. Immunity, 2015, 42, 123-132.	14.3	353
146	In memoriam – Richard M. Elliott (1954–2015). Journal of General Virology, 2015, 96, 1975-1978.	2.9	4
147	New Methods in Tissue Engineering: Improved Models for Viral Infection. Annual Review of Virology, 2014, 1, 475-499.	6.7	23
148	Multifaceted Activities of Type I Interferon Are Revealed by a Receptor Antagonist. Science Signaling, 2014, 7, ra50.	3.6	94
149	Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Science Translational Medicine, 2014, 6, 254ra129.	12.4	204
150	Identification of AP80978, a Novel Small-Molecule Inhibitor of Hepatitis C Virus Replication That Targets NS4B. Antimicrobial Agents and Chemotherapy, 2014, 58, 3399-3410.	3.2	20
151	Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annual Review of Immunology, 2014, 32, 513-545.	21.8	2,318
152	Interferon Lambda Alleles Predict Innate Antiviral Immune Responses and Hepatitis C Virus Permissiveness. Cell Host and Microbe, 2014, 15, 190-202.	11.0	94
153	Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nature Medicine, 2014, 20, 47-53.	30.7	256
154	Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 2014, 505, 691-695.	27.8	773
155	Hepatitis C Virus Genotype 5a Subgenomic Replicons for Evaluation of Direct-Acting Antiviral Agents. Antimicrobial Agents and Chemotherapy, 2014, 58, 5386-5394.	3.2	32
156	Seed Sequence-Matched Controls Reveal Limitations of Small Interfering RNA Knockdown in Functional and Structural Studies of Hepatitis C Virus NS5A-MOBKL1B Interaction. Journal of Virology, 2014, 88, 11022-11033.	3.4	21
157	Increased Replicative Fitness Can Lead to Decreased Drug Sensitivity of Hepatitis C Virus. Journal of Virology, 2014, 88, 12098-12111.	3.4	74
158	Virus associated malignancies: The role of viral hepatitis in hepatocellular carcinoma. Seminars in Cancer Biology, 2014, 26, 78-88.	9.6	149
159	Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12193-12198.	7.1	220
160	Treatment triumphs. Nature, 2014, 510, 43-44.	27.8	36
161	The ins and outs of hepatitis C virus entry and assembly. Nature Reviews Microbiology, 2013, 11, 688-700.	28.6	324
162	Recapitulation of the hepatitis C virus life-cycle in engineered murine cell lines. Virology, 2013, 444, 1-11.	2.4	64

#	Article	IF	CITATIONS
163	Identification of Rodent Homologs of Hepatitis C Virus and Pegiviruses. MBio, 2013, 4, e00216-13.	4.1	187
164	Different Requirements for Scavenger Receptor Class B Type I in Hepatitis C Virus Cell-Free versus Cell-to-Cell Transmission. Journal of Virology, 2013, 87, 8282-8293.	3.4	81
165	Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15001-15006.	7.1	154
166	Identification of a Pegivirus (GB Virus-Like Virus) That Infects Horses. Journal of Virology, 2013, 87, 7185-7190.	3.4	82
167	Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14610-14615.	7.1	166
168	Serology-Enabled Discovery of Genetically Diverse Hepaciviruses in a New Host. Journal of Virology, 2012, 86, 6171-6178.	3.4	219
169	Characterization of a canine homolog of hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11608-11613.	7.1	250
170	A diverse range of gene products are effectors of the type I interferon antiviral response. Nature, 2011, 472, 481-485.	27.8	2,054
171	Expression of paramyxovirus V proteins promotes replication and spread of hepatitis C virus in cultures of primary human fetal liver cells. Hepatology, 2011, 54, 1901-1912.	7.3	80
172	Perspective: Miles to go before we sleep. Nature, 2011, 474, S8-S8.	27.8	16
173	Identification and Characterization of the Host Protein DNAJC14 as a Broadly Active Flavivirus Replication Modulator. PLoS Pathogens, 2011, 7, e1001255.	4.7	67
174	Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nature Biotechnology, 2010, 28, 167-171.	17.5	235
175	Chair's Introduction. Novartis Foundation Symposium, 2008, , 1-2.	1.1	0
176	Hepatitis C Virus p7 and NS2 Proteins Are Essential for Production of Infectious Virus. Journal of Virology, 2007, 81, 8374-8383.	3.4	398
177	Treating hepatitis C: Can you teach old dogs new tricks?. Hepatology, 2005, 42, 1455-1458.	7.3	17
178	Complete Replication of Hepatitis C Virus in Cell Culture. Science, 2005, 309, 623-626.	12.6	2,099
179	HCV Persistence and Immune Evasion in the Absence of Memory T Cell Help. Science, 2003, 302, 659-662.	12.6	747
180	A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. Journal of General Virology, 2003, 84, 1261-1268.	2.9	185

#	Article	IF	CITATIONS
181	Highly Permissive Cell Lines for Subgenomic and Genomic Hepatitis C Virus RNA Replication. Journal of Virology, 2002, 76, 13001-13014.	3.4	1,093
182	Cis-acting RNA elements at the $5\hat{a} \in \mathbb{R}^2$ end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. Rna, 2001, 7, 1638-1651.	3.5	119
183	Bad time for Bonzo? Experimental models of hepatitis C virus infection, replication, and pathogenesis. Hepatology, 2001, 33, 489-495.	7.3	41
184	Efficient Initiation of HCV RNA Replication in Cell Culture. Science, 2000, 290, 1972-1974.	12.6	1,312
185	Is CD81 the key to hepatitis C virus entry?. Hepatology, 1999, 29, 990-992.	7.3	23
186	Continuous human cell lines inducibly expressing hepatitis C virus structural and nonstructural proteins. Hepatology, 1998, 28, 192-201.	7.3	149
187	cis-acting RNA elements required for replication of bovine viral diarrhea virus–hepatitis C virus 5′ nontranslated region chimeras. Rna, 1998, 4, 1418-1435.	3.5	67
188	Infectious Bovine Viral Diarrhea Virus (Strain NADL) RNA from Stable cDNA Clones: a Cellular Insert Determines NS3 Production and Viral Cytopathogenicity. Journal of Virology, 1998, 72, 4737-4745.	3.4	140
189	Transmission of Hepatitis C by Intrahepatic Inoculation with Transcribed RNA. Science, 1997, 277, 570-574.	12.6	670
190	Complete nucleotide sequence of yellow fever virus vaccine strains 17DD and 17D-213. Virus Research, 1995, 35, 35-41.	2.2	81
191	FLAVIVIRUS GENOME ORGANIZATION, EXPRESSION, AND REPLICATION. Annual Review of Microbiology, 1990, 44, 649-688.	7.3	1,829