
Tudor C Badea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8658571/publications.pdf Version: 2024-02-01

TUDOR C RADEA

#	Article	IF	CITATIONS
1	Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature, 2008, 453, 102-105.	27.8	734
2	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2009, 139, 285-298.	28.9	377
3	Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature, 2011, 476, 92-95.	27.8	360
4	A Noninvasive Genetic/Pharmacologic Strategy for Visualizing Cell Morphology and Clonal Relationships in the Mouse. Journal of Neuroscience, 2003, 23, 2314-2322.	3.6	238
5	Distinct Roles of Transcription Factors Brn3a and Brn3b in Controlling the Development, Morphology, and Function of Retinal Ganglion Cells. Neuron, 2009, 61, 852-864.	8.1	233
6	Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. Journal of Comparative Neurology, 2004, 480, 331-351.	1.6	223
7	Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature, 2011, 470, 259-263.	27.8	190
8	Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. Journal of Neuroscience, 2016, 36, 2827-2842.	3.6	179
9	Class 5 Transmembrane Semaphorins Control Selective Mammalian Retinal Lamination and Function. Neuron, 2011, 71, 460-473.	8.1	137
10	Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells. Atherosclerosis, 1999, 142, 47-56.	0.8	109
11	A system to measure the Optokinetic and Optomotor response in mice. Journal of Neuroscience Methods, 2015, 256, 91-105.	2.5	109
12	RGC-32 Increases p34CDC2 Kinase Activity and Entry of Aortic Smooth Muscle Cells into S-phase. Journal of Biological Chemistry, 2002, 277, 502-508.	3.4	101
13	Modality-Based Organization of Ascending Somatosensory Axons in the Direct Dorsal Column Pathway. Journal of Neuroscience, 2013, 33, 17691-17709.	3.6	98
14	Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: Analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Research, 2011, 51, 269-279.	1.4	91
15	Molecular Cloning and Characterization of RGC-32, a Novel Gene Induced by Complement Activation in Oligodendrocytes. Journal of Biological Chemistry, 1998, 273, 26977-26981.	3.4	85
16	Order from disorder: Self-organization in mammalian hair patterning. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19800-19805.	7.1	85
17	New Mouse Lines for the Analysis of Neuronal Morphology Using CreER(T)/loxP-Directed Sparse Labeling. PLoS ONE, 2009, 4, e7859.	2.5	83
18	A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. ELife, 2016, 5, .	6.0	83

TUDOR C BADEA

#	Article	IF	CITATIONS
19	Combinatorial Expression of Brn3 Transcription Factors in Somatosensory Neurons: Genetic and Morphologic Analysis. Journal of Neuroscience, 2012, 32, 995-1007.	3.6	82
20	Development of melanopsin-based irradiance detecting circuitry. Neural Development, 2011, 6, 8.	2.4	77
21	Comparison of optomotor and optokinetic reflexes in mice. Journal of Neurophysiology, 2017, 118, 300-316.	1.8	62
22	Molecular codes for cell type specification in Brn3 retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3974-E3983.	7.1	60
23	Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. Journal of Neuroscience, 2017, 37, 3294-3310.	3.6	56
24	Calcium imaging of epileptiform events with single-cell resolution. Journal of Neurobiology, 2001, 48, 215-227.	3.6	54
25	Overexpression of RGC-32 in colon cancer and other tumors. Experimental and Molecular Pathology, 2005, 78, 116-122.	2.1	52
26	Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nature Communications, 2021, 12, 1451.	12.8	43
27	Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. Immunopharmacology, 1997, 38, 177-187.	2.0	42
28	Atoh7-independent specification of retinal ganglion cell identity. Science Advances, 2021, 7, .	10.3	41
29	Genetic Interactions between Brn3 Transcription Factors in Retinal Ganglion Cell Type Specification. PLoS ONE, 2013, 8, e76347.	2.5	36
30	RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Experimental and Molecular Pathology, 2015, 98, 328-337.	2.1	35
31	Tyrosine phosphorylation and activation of Janus kinase 1 and STAT3 by sublytic C5b-9 complement complex in aortic endothelial cells. Immunopharmacology, 1999, 42, 187-193.	2.0	33
32	Dre - Cre Sequential Recombination Provides New Tools for Retinal Ganglion Cell Labeling and Manipulation in Mice. PLoS ONE, 2014, 9, e91435.	2.5	31
33	C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2741-2746.	7.1	28
34	NRF1 association with AUTS2-Polycomb mediates specific gene activation in the brain. Molecular Cell, 2021, 81, 4663-4676.e8.	9.7	23
35	Essential Roles of Tbr1 in the Formation and Maintenance of the Orientation-Selective J-RGCs and a Group of OFF-Sustained RGCs in Mouse. Cell Reports, 2019, 27, 900-915.e5.	6.4	22
36	Sublytic Terminal Complement Attack on Myotubes Decreases the Expression of mRNAs Encoding Muscle-Specific Proteins. Journal of Neurochemistry, 2002, 68, 1581-1589.	3.9	20

TUDOR C BADEA

#	Article	IF	CITATIONS
37	Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3: Genes, Genomes, Genetics, 2016, 6, 559-571.	1.8	18
38	Dynamic expression of transcription factor Brn3b during mouse cranial nerve development. Journal of Comparative Neurology, 2016, 524, 1033-1061.	1.6	18
39	RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunologic Research, 2018, 66, 445-461.	2.9	16
40	Postnatal developmental dynamics of cell type specification genes in Brn3a/Pou4f1 Retinal Ganglion Cells. Neural Development, 2018, 13, 15.	2.4	16
41	Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nature Communications, 2022, 13, 374.	12.8	16
42	RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2017, 198, 3869-3877.	0.8	14
43	Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. Journal of Comparative Neurology, 2018, 526, 742-766.	1.6	14
44	Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells. Journal of Comparative Neurology, 2019, 527, 187-211.	1.6	14
45	Sublytic terminal complement attack induces c-fos transcriptional activation in myotubes. Journal of Neuroimmunology, 2003, 142, 58-66.	2.3	11
46	Differential expression and subcellular localization of Copines in mouse retina. Journal of Comparative Neurology, 2019, 527, 2245-2262.	1.6	10
47	Characterization of Tbr2â€expressing retinal ganglion cells. Journal of Comparative Neurology, 2021, 529, 3513-3532.	1.6	10
48	Identification of retinal ganglion cell types and brain nuclei expressing the transcription factor Brn3c/Pou4f3 using a Cre recombinase knockâ€in allele. Journal of Comparative Neurology, 2021, 529, 1926-1953.	1.6	9
49	Cellular sensing platform with enhanced sensitivity based on optogenetic modulation of cell homeostasis. Biosensors and Bioelectronics, 2020, 154, 112003.	10.1	7
50	Regulator of Cell Cycle Protein (RGCC/RGC-32) Protects against Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 146-157.	2.9	6
51	Modulation of Cellular Reactivity for Enhanced Cell-Based Biosensing. Analytical Chemistry, 2020, 92, 806-814.	6.5	5
52	Retinal ganglion cell defects cause decision shifts in visually evoked defense responses. Journal of Neurophysiology, 2020, 124, 1530-1549.	1.8	4
53	Genetic interplay between transcription factor Pou4f1/Brn3a and neurotrophin receptor Ret in retinal ganglion cell type specification. Neural Development, 2021, 16, 5.	2.4	4
54	RGC-32 Regulates Generation of Reactive Astrocytes in Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2020, 11, 608294.	4.8	4

TUDOR C BADEA

#	Article	IF	CITATIONS
55	Molecular studies into cell biological role of Copine-4 in Retinal Ganglion Cells. PLoS ONE, 2021, 16, e0255860.	2.5	4
56	Identification of Retinal Ganglion Cell Firing Patterns Using Clustering Analysis Supplied with Failure Diagnosis. International Journal of Neural Systems, 2018, 28, 1850008.	5.2	3
57	RGC-32′ dual role in smooth muscle cells and atherogenesis. Clinical Immunology, 2022, 238, 109020.	3.2	3
58	Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization. Cell, 2010, 141, 191.	28.9	1
59	Robust spike sorting of retinal ganglion cells tuned to spot stimuli. , 2016, 2016, 1745-1749.		1
60	RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Frontiers in Immunology, 2021, 12, 705308.	4.8	1
61	RGC-32 promotes Th17 cell differentiation and enhances experimental autoimmune encephalomyelitis. Immunobiology, 2016, 221, 1173.	1.9	0
62	513â€Response gene to complement -32 facilitates local recruitment of IL-17- producing cells in immune complex mediated glomerulonephritis through the CCR6/CCL20 axis. , 2021, , .		0