
Roman Engel-Herbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8657877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergent interface vibrational structure of oxide superlattices. Nature, 2022, 601, 556-561.	27.8	40
2	Oxygen vacancy dynamics in monoclinic metallic VO2 domain structures. Applied Physics Letters, 2022, 120, .	3.3	6
3	A low-temperature route for producing epitaxial perovskite superlattice structures on (001)-oriented SrTiO ₃ /Si substrates. Journal of Materials Chemistry C, 2021, 9, 13115-13122.	5.5	3
4	Self-regulated growth of [111]-oriented perovskite oxide films using hybrid molecular beam epitaxy. APL Materials, 2021, 9, .	5.1	4
5	Sticking coefficients of selenium and tellurium. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	7
6	Dynamics of voltage-driven oscillating insulator-metal transitions. Physical Review B, 2021, 104, .	3.2	10
7	Substrate Modification during Chemical Vapor Deposition of hBN on Sapphire. ACS Applied Materials & Interfaces, 2021, 13, 54516-54526.	8.0	15
8	Rewritable Nanoplasmonics through Room-Temperature Phase Manipulations of Vanadium Dioxide. Nano Letters, 2020, 20, 7760-7766.	9.1	10
9	SrNbO3 as a transparent conductor in the visible and ultraviolet spectra. Communications Physics, 2020, 3, .	5.3	48
10	Sputtered Sr <i>_x</i> NbO ₃ as a UV-Transparent Conducting Film. ACS Applied Materials & Interfaces, 2020, 12, 30520-30529.	8.0	18
11	Property and cation valence engineering in entropy-stabilized oxide thin films. Physical Review Materials, 2020, 4, .	2.4	20
12	Onâ€Đemand Nanoscale Manipulations of Correlated Oxide Phases. Advanced Functional Materials, 2019, 29, 1905585.	14.9	14
13	Structural dynamics of LaVO3 on the nanosecond time scale. Structural Dynamics, 2019, 6, 014502.	2.3	3
14	Large tetragonality and room temperature ferroelectricity in compressively strained CaTiO3 thin films. APL Materials, 2019, 7, .	5.1	10
15	Scaling growth rates for perovskite oxide virtual substrates on silicon. Nature Communications, 2019, 10, 2464.	12.8	19
16	Toward a Low-Temperature Route for Epitaxial Integration of BiFeO ₃ on Si. Journal of Physical Chemistry C, 2019, 123, 12203-12210.	3.1	6
17	Temperature-dependent growth window of CaTiO3 films grown by hybrid molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	8
18	Frontiers in the Growth of Complex Oxide Thin Films: Past, Present, and Future of Hybrid MBE. Advanced Functional Materials, 2018, 28, 1702772.	14.9	78

#	Article	IF	CITATIONS
19	Continuously Tuning Epitaxial Strains by Thermal Mismatch. ACS Nano, 2018, 12, 1306-1312.	14.6	44
20	A Three-Terminal Edge-Triggered Mott Switch. , 2018, , .		4
21	Overlapping growth windows to build complex oxide superlattices. APL Materials, 2018, 6, 111104.	5.1	3
22	Hybrid vanadate waveguiding configurations for extreme optical confinement and efficient polarization management in the near-infrared. Nanoscale, 2018, 10, 16667-16674.	5.6	4
23	Native oxide removal from Ge surfaces by hydrogen plasma. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	2
24	Opportunities in vanadium-based strongly correlated electron systems. MRS Communications, 2017, 7, 27-52.	1.8	77
25	High-Quality LaVO ₃ Films as Solar Energy Conversion Material. ACS Applied Materials & Interfaces, 2017, 9, 12556-12562.	8.0	26
26	Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 15848-15856.	8.0	33
27	Self-regulated growth of CaVO3 by hybrid molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	13
28	Improving the structural quality and electrical resistance of SrTiO3 thin films on Si (001) via a two-step anneal. Journal of Applied Physics, 2016, 119, .	2.5	14
29	Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	3.3	22
30	Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy. Applied Physics Letters, 2016, 109,	3.3	18
31	Unleashing Strain Induced Ferroelectricity in Complex Oxide Thin Films via Precise Stoichiometry Control. Advanced Functional Materials, 2016, 26, 7271-7279.	14.9	30
32	Imprinting of Local Metallic States into VO ₂ with Ultraviolet Light. Advanced Functional Materials, 2016, 26, 6612-6618.	14.9	43
33	The ReaxFF reactive force-field: development, applications and future directions. Npj Computational Materials, 2016, 2, .	8.7	1,319
34	Photoluminescence of monolayer transition metal dichalcogenides integrated with VO ₂ . Journal of Physics Condensed Matter, 2016, 28, 504001.	1.8	10
35	Creative tension in layered crystals. Nature Materials, 2016, 15, 928-930.	27.5	6
36	Correlated metals as transparent conductors. Nature Materials, 2016, 15, 204-210.	27.5	291

ROMAN ENGEL-HERBERT

#	Article	lF	CITATIONS
37	Accessing a growth window for SrVO3 thin films. Applied Physics Letters, 2015, 107, .	3.3	48
38	Phase stabilization of VO2 thin films in high vacuum. Journal of Applied Physics, 2015, 118, .	2.5	14
39	Growth of SrVO3 thin films by hybrid molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	22
40	Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy. Applied Physics Letters, 2015, 107, .	3.3	88
41	Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy. Applied Physics Letters, 2015, 106, .	3.3	42
42	Wafer-scale growth of VO2 thin films using a combinatorial approach. Nature Communications, 2015, 6, 8475.	12.8	117
43	A steep-slope transistor based on abrupt electronic phase transition. Nature Communications, 2015, 6, 7812.	12.8	294
44	High quality HfO2/p-GaSb(001) metal-oxide-semiconductor capacitors with 0.8 nm equivalent oxide thickness. Applied Physics Letters, 2014, 105, .	3.3	20
45	Growth of SrTiO ₃ on Si(001) by hybrid molecular beam epitaxy. Physica Status Solidi - Rapid Research Letters, 2014, 8, 917-923.	2.4	32
46	Synchronized charge oscillations in correlated electron systems. Scientific Reports, 2014, 4, .	3.3	155
47	Molecular beam epitaxy ofÂcomplex oxides. , 2013, , 417-449.		12
48	Highly Conductive SrVO ₃ as a Bottom Electrode for Functional Perovskite Oxides. Advanced Materials, 2013, 25, 3578-3582.	21.0	116
49	Nitrogen-passivated dielectric/InGaAs interfaces with sub-nm equivalent oxide thickness and low interface trap densities. Applied Physics Letters, 2013, 102, .	3.3	73
50	Intrinsic electronic switching time in ultrathin epitaxial vanadium dioxide thin film. Applied Physics Letters, 2013, 102, .	3.3	39
51	Low-Temperature Atomic-Layer-Deposited High-κ Dielectric for p-Channel In _{0.7} Ga _{0.3} As/GaAs _{0.35} Sb _{0.65} Heterojunction Tunneling Field-Effect Transistor. Applied Physics Express, 2013, 6, 101201.	2.4	8
52	Nanoscale structural evolution of electrically driven insulator to metal transition in vanadium dioxide. Applied Physics Letters, 2013, 103, .	3.3	31
53	Micromagnetic analysis of unusual, V-shaped domain transitions in MnAs nanowires. Journal of Magnetism and Magnetic Materials, 2011, 323, 1840-1845.	2.3	6
54	Influence of trimethylaluminum on the growth and properties of HfO2/In0.53Ga0.47As interfaces. Applied Physics Letters, 2011, 98, 052911.	3.3	28

ROMAN ENGEL-HERBERT

#	Article	IF	CITATIONS
55	Al-doped HfO2/In0.53Ga0.47As metal-oxide-semiconductor capacitors. Applied Physics Letters, 2011, 98, 142901.	3.3	23
56	Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 Vâ^'1 sâ^'1. Nature Materials, 2 482-484.	2010, 9, 27.5	342
57	Fermi-Level Unpinning of HfO ₂ /In _{0.53} Ga _{0.47} As Gate Stack Using Hydrogen Anneals. ECS Transactions, 2010, 33, 117-121.	0.5	1
58	Effect of postdeposition anneals on the Fermi level response of HfO2/In0.53Ga0.47As gate stacks. Journal of Applied Physics, 2010, 108, .	2.5	35
59	Quantification of trap densities at dielectric/III–V semiconductor interfaces. Applied Physics Letters, 2010, 97, .	3.3	44
60	Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces. Applied Physics Letters, 2010, 96, .	3.3	63
61	Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces. Journal of Applied Physics, 2010, 108, .	2.5	352
62	Metal-oxide-semiconductor capacitors with ZrO2 dielectrics grown on In0.53Ga0.47As by chemical beam deposition. Applied Physics Letters, 2009, 95, 062908.	3.3	42
63	Growth modes in metal-organic molecular beam epitaxy of TiO2 on r-plane sapphire. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 230-233.	2.1	32
64	Chemical beam deposition of high- <i>k</i> gate dielectrics on III-V semiconductors: TiO ₂ on In _{0.53} Ga _{0.47} As. Materials Research Society Symposia Proceedings, 2009, 1155, 1.	0.1	2
65	Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3. Journal of Crystal Growth, 2009, 312, 149-153.	1.5	21
66	Stoichiometry optimization of homoepitaxial oxide thin films using x-ray diffraction. Applied Physics Letters, 2009, 95, .	3.3	38
67	Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 461-464.	2.1	155
68	Metal-oxide-semiconductor capacitors with erbium oxide dielectrics on In0.53Ga0.47As channels. Applied Physics Letters, 2009, 94, 122907.	3.3	9
69	Effects of hydrogen anneals on oxygen deficient SrTiO3â^'x single crystals. Applied Physics Letters, 2008, 93, .	3.3	42
70	Micromagnetic properties of epitaxial MnAs films on GaAs surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1763-1766.	0.8	2