
Bruce J Shenker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8656015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Active Subunit of the Cytolethal Distending Toxin, CdtB, Derived From Both Haemophilus ducreyi and Campylobacter jejuni Exhibits Potent Phosphatidylinositol-3,4,5-Triphosphate Phosphatase Activity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 664221.	3.9	9
2	The Cell-Cycle Regulatory Protein p21CIP1/WAF1 Is Required for Cytolethal Distending Toxin (Cdt)-Induced Apoptosis. Pathogens, 2020, 9, 38.	2.8	13
3	Internalization and Intoxication of Human Macrophages by the Active Subunit of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Is Dependent Upon Cellugyrin (Synaptogyrin-2). Frontiers in Immunology, 2020, 11, 1262.	4.8	15
4	Cytolethal distending toxinâ€induced release of interleukinâ€1β by human macrophages is dependent upon activation of glycogen synthase kinase 3β, spleen tyrosine kinase (Syk) and the noncanonical inflammasome. Cellular Microbiology, 2020, 22, e13194.	2.1	13
5	Tribute: Edward â€~Ned' Lally. Molecular Oral Microbiology, 2019, 34, 235-236.	2.7	0
6	Internalization of the Active Subunit of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Is Dependent upon Cellugyrin (Synaptogyrin 2), a Host Cell Non-Neuronal Paralog of the Synaptic Vesicle Protein, Synaptogyrin 1. Frontiers in Cellular and Infection Microbiology, 2017, 7, 469.	3.9	16
7	A Journey of Cytolethal Distending Toxins through Cell Membranes. Frontiers in Cellular and Infection Microbiology, 2016, 6, 81.	3.9	32
8	The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Frontiers in Cellular and Infection Microbiology, 2016, 6, 168.	3.9	63
9	The toxicity of the <i>Aggregatibacter actinomycetemcomitans</i> cytolethal distending toxin correlates with its phosphatidylinositol-3,4,5-triphosphate phosphatase activity. Cellular Microbiology, 2016, 18, 223-243.	2.1	34
10	Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Activates the NLRP3 Inflammasome in Human Macrophages, Leading to the Release of Proinflammatory Cytokines. Infection and Immunity, 2015, 83, 1487-1496.	2.2	55
11	The Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin Active Subunit CdtB Contains a Cholesterol Recognition Sequence Required for Toxin Binding and Subunit Internalization. Infection and Immunity, 2015, 83, 4042-4055.	2.2	20
12	Blockade of the PI-3K signalling pathway by the <i>Aggregatibacter actinomycetemcomitans</i> cytolethal distending toxin induces macrophages to synthesize and secrete pro-inflammatory cytokines. Cellular Microbiology, 2014, 16, 1391-1404.	2.1	47
13	Dental sealants and composite restorations and longitudinal changes in immune function markers in children. International Journal of Paediatric Dentistry, 2014, 24, 215-225.	1.8	12
14	PIP3 Regulation as Promising Targeted Therapy of Mast-Cell-Mediated Diseases. Current Pharmaceutical Design, 2011, 17, 3815-3822.	1.9	14
15	Inhibition of mast cell degranulation by a chimeric toxin containing a novel phosphatidylinositol-3,4,5-triphosphate phosphatase. Molecular Immunology, 2010, 48, 203-210.	2.2	23
16	Cytolethal Distending Toxin-induced Cell Cycle Arrest of Lymphocytes Is Dependent upon Recognition and Binding to Cholesterol. Journal of Biological Chemistry, 2009, 284, 10650-10658.	3.4	72
17	Immune Function Effects of Dental Amalgam in Children. Journal of the American Dental Association, 2008, 139, 1496-1505.	1.5	21
18	A Novel Mode of Action for a Microbial-Derived Immunotoxin: The Cytolethal Distending Toxin Subunit B Exhibits Phosphatidylinositol 3,4,5-Triphosphate Phosphatase Activity. Journal of Immunology, 2007, 178, 5099-5108.	0.8	94

BRUCE J SHENKER

#	Article	IF	CITATIONS
19	Cholesterol-rich membrane microdomains mediate cell cycle arrest induced by Actinobacillus actinomycetemcomitans cytolethal-distending toxin. Cellular Microbiology, 2006, 8, 823-836.	2.1	73
20	Exposure of Lymphocytes to High Doses of Actinobacillus actinomycetemcomitans Cytolethal Distending Toxin Induces Rapid Onset of Apoptosis-Mediated DNA Fragmentation. Infection and Immunity, 2006, 74, 2080-2092.	2.2	38
21	Induction of Cell Cycle Arrest in Lymphocytes by <i>Actinobacillus actinomycetemcomitans</i> Cytolethal Distending Toxin Requires Three Subunits for Maximum Activity. Journal of Immunology, 2005, 174, 2228-2234.	0.8	64
22	<i>Actinobacillus actinomycetemcomitans</i> Cytolethal Distending Toxin (Cdt): Evidence That the Holotoxin Is Composed of Three Subunits: CdtA, CdtB, and CdtC. Journal of Immunology, 2004, 172, 410-417.	0.8	71
23	Mercury-Induced Apoptosis in Human Lymphocytes: Caspase Activation Is Linked to Redox Status. Antioxidants and Redox Signaling, 2002, 4, 379-389.	5.4	65
24	Sonicated extract of <i>Treponema denticola</i> impairs the lymphocyte proliferation. The Journal of Korean Academy of Conservative Dentistry, 2002, 27, 473.	0.3	0
25	Maintenance of oxidative phosphorylation protects cells from Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis. Cellular Microbiology, 2001, 3, 811-823.	2.1	22
26	Induction of Apoptosis in Human T Cells by <i>Actinobacillus actinomycetemcomitans</i> Cytolethal Distending Toxin Is a Consequence of G2 Arrest of the Cell Cycle. Journal of Immunology, 2001, 167, 435-441.	0.8	112
27	Expression of the Cytolethal Distending Toxin (Cdt) Operon in <i>Actinobacillus actinomycetemcomitans:</i> Evidence That the CdtB Protein Is Responsible for G2 Arrest of the Cell Cycle in Human T Cells. Journal of Immunology, 2000, 165, 2612-2618.	0.8	97
28	Induction of Apoptosis in Human T-Cells by Methyl Mercury: Temporal Relationship between Mitochondrial Dysfunction and Loss of Reductive Reserve. Toxicology and Applied Pharmacology, 1999, 157, 23-35.	2.8	116
29	Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiationin vitro. , 1998, 41, 87-94.		59
30	Modulation of chondrocyte proliferation by ascorbic acid and BMP-2. Journal of Cellular Physiology, 1998, 174, 331-341.	4.1	38
31	Low-Level Methylmercury Exposure Causes Human T-Cells to Undergo Apoptosis: Evidence of Mitochondrial Dysfunction. Environmental Research, 1998, 77, 149-159.	7.5	146
32	Modulation of chondrocyte proliferation by ascorbic acid and BMPâ€2. Journal of Cellular Physiology, 1998, 174, 331-341.	4.1	7
33	RTX Toxins Recognize a β2 Integrin on the Surface of Human Target Cells. Journal of Biological Chemistry, 1997, 272, 30463-30469.	3.4	240
34	Induction of Apoptosis in Human T-Cells by Organomercuric Compounds: A Flow Cytometric Analysis. Toxicology and Applied Pharmacology, 1997, 143, 397-406.	2.8	72
35	Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology, 1997, 124, 211-224.	4.2	130
36	Induction of Human T Cells That Coexpress CD4 and CD8 by an Immunomodulatory Protein Produced by Actinobacillus actinomycetemcomitans. Cellular Immunology, 1995, 164, 36-46.	3.0	28

BRUCE J SHENKER

#	Article	IF	CITATIONS
37	Bivariate flow karyotyping with air-cooled lasers. Cytometry, 1994, 16, 169-174.	1.8	16
38	Flow cytometric analysis of the cytotoxic effects of <i>Actinobacillus actinomycetemcomitans</i> leukotoxin on human natural killer cells. Journal of Leukocyte Biology, 1994, 55, 153-160.	3.3	40
39	Immunologic dysfunction in the pathogenesis of periodontal diseases*. Journal of Clinical Periodontology, 1987, 14, 489-498.	4.9	68
40	Suppression of lymphocyte responses by Actinobacillus actinomycetemcomitans. Journal of Periodontal Research, 1982, 17, 462-465.	2.7	40