Andrew R Weeks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8655938/publications.pdf

Version: 2024-02-01

114 papers 7,299 citations

43 h-index 79 g-index

120 all docs

120 docs citations

times ranked

120

7449 citing authors

#	Article	IF	CITATIONS
1	Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, $2011, 4, 709-725$.	3.1	661
2	From Parasite to Mutualist: Rapid Evolution of Wolbachia in Natural Populations of Drosophila. PLoS Biology, 2007, 5, e114.	5 . 6	375
3	A Rapid Shift in a Classic Clinal Pattern in Drosophila Reflecting Climate Change. Science, 2005, 308, 691-693.	12.6	352
4	Shifting paradigms in restoration of the world's coral reefs. Global Change Biology, 2017, 23, 3437-3448.	9.5	351
5	Incidence of a new sex–ratio–distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1857-1865.	2.6	273
6	A Mite Species That Consists Entirely of Haploid Females. Science, 2001, 292, 2479-2482.	12.6	258
7	Climatic selection on genes and traits after a 100Âyear-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica, 2007, 129, 133-147.	1.1	246
8	Chromosomal inversion polymorphisms and adaptation. Trends in Ecology and Evolution, 2004, 19, 482-488.	8.7	217
9	A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses, 2015, 2, .	2.6	175
10	Rapid Sequential Spread of Two Wolbachia Variants in Drosophila simulans. PLoS Pathogens, 2013, 9, e1003607.	4.7	169
11	Dynamics of the "Popcorn―Wolbachia Infection in Outbred <i>Aedes aegypti</i> Informs Prospects for Mosquito Vector Control. Genetics, 2011, 187, 583-595.	2.9	162
12	Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics, 2014, 15, 275.	2.8	157
13	Wolbachia dynamics and host effects: what has (and has not) been demonstrated?. Trends in Ecology and Evolution, 2002, 17, 257-262.	8.7	135
14	Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological Applications, 2015, 25, 1944-1952.	3.8	135
15	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	4.8	128
16	Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nature Communications, 2017, 8, 1071.	12.8	113
17	High-Throughput PCR Assays To Monitor Wolbachia Infection in the Dengue Mosquito (Aedes aegypti) and Drosophila simulans. Applied and Environmental Microbiology, 2012, 78, 4740-4743.	3.1	107
18	The latitudinal cline in the In(3R)Payne inversion polymorphism has shifted in the last 20Âyears in Australian Drosophila melanogaster populations. Molecular Ecology, 2005, 14, 851-858.	3.9	105

#	Article	IF	Citations
19	Dealing with falseâ€positive and falseâ€negative errors about species occurrence at multiple levels. Methods in Ecology and Evolution, 2017, 8, 1081-1091.	5.2	105
20	Dissecting adaptive clinal variation: markers, inversions and size/stress associations in Drosophila melanogaster from a central field population. Ecology Letters, 2002, 5, 756-763.	6.4	103
21	Assessing the costâ€efficiency of environmental <scp>DNA</scp> sampling. Methods in Ecology and Evolution, 2016, 7, 1291-1298.	5.2	103
22	Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals. Frontiers in Zoology, 2016, 13, 31.	2.0	103
23	Microsatellites reveal a lack of structure in Australian populations of the diamondback moth, Plutella xylostella (L.). Molecular Ecology, 2005, 15, 107-118.	3.9	101
24	Persistence of a <i>Wolbachia</i> infection frequency cline in <i>Drosophila melanogaster</i> and the possible role of reproductive dormancy. Evolution; International Journal of Organic Evolution, 2016, 70, 979-997.	2.3	99
25	Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	92
26	Genetic mixing for population management: From genetic rescue to provenancing. Evolutionary Applications, 2021, 14, 634-652.	3.1	85
27	Investigating latitudinal clines for life history and stress resistance traits in <i>Drosophila simulans</i> from eastern Australia. Journal of Evolutionary Biology, 2008, 21, 1470-1479.	1.7	83
28	Small population size and extremely low levels of genetic diversity in island populations of the platypus, <i>Ornithorhynchus anatinus</i> Lecology and Evolution, 2012, 2, 844-857.	1.9	83
29	Parthenogenesis in the <i>Aspidiotus nerii</i> Complex (Hemiptera: Diaspididae): A Single Origin of a Worldwide, Polyphagous Lineage Associated with <i>Cardinium</i> Bacteria. Annals of the Entomological Society of America, 2005, 98, 629-635.	2.5	70
30	Molecular markers indicate that the wheat curl mite, <i>Aceria tosichella</i> Keifer, may represent a species complex in Australia. Bulletin of Entomological Research, 2009, 99, 479-486.	1.0	70
31	Increased fecundity associated with infection by a Cytophaga –like intracellular bacterium in the predatory mite, Metaseiulus occidentalis. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S193-5.	2.6	67
32	Genetic structure of Halotydeus destructor and Penthaleus major populations in Victoria (Acari:) Tj ETQq0 0 0 rg	BT ₁ Overlo	ock 10 Tf 50 2
33	Unbiased population heterozygosity estimates from genomeâ€wide sequence data. Methods in Ecology and Evolution, 2021, 12, 1888-1898.	5.2	55
34	Free-living mesostigmatic mites in Australia: their roles in biological control and bioindication. Australian Journal of Experimental Agriculture, 2007, 47, 460.	1.0	54
35	The changing status of invertebrate pests and the future of pest management in the Australian grains industry. Australian Journal of Experimental Agriculture, 2008, 48, 1481.	1.0	54
36	Detection of Low-Level Cardinium and Wolbachia Infections in Culicoides. Applied and Environmental Microbiology, 2015, 81, 6177-6188.	3.1	54

#	Article	IF	CITATIONS
37	Optimal survey designs for environmental DNA sampling. Methods in Ecology and Evolution, 2018, 9, 1049-1059.	5.2	53
38	Balancing genetic uniqueness and genetic variation in determining conservation and translocation strategies: a comprehensive case study of threatened dwarf galaxias, <i><scp>G</scp>alaxiella pusilla</i> (<scp>M</scp> ack) (<scp>P</scp> isces: <scp>G</scp> alaxiidae). Molecular Ecology, 2013, 22, 1820-1835.	3.9	50
39	Antagonistic selection between adult thorax and wing size in field released <i>Drosophila melanogaster</i> independent of thermal conditions. Journal of Evolutionary Biology, 2007, 20, 2219-2227.	1.7	49
40	A high incidence of parthenogenesis in agricultural pests. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2473-2481.	2.6	49
41	AFLP fingerprinting for assessing intraspecific variation and genome mapping in mites. Experimental and Applied Acarology, 2000, 24, 775-793.	1.6	48
42	ls there genetic structure in populations of Helicoverpa armigera from Australia?. Entomologia Experimentalis Et Applicata, 2007, 122, 253-263.	1.4	48
43	Changes in the Genetic Structure of <i>Aedes aegypti</i> (Diptera: Culicidae) Populations in Queensland, Australia, Across Two Seasons: Implications for Potential Mosquito Releases. Journal of Medical Entomology, 2011, 48, 999-1007.	1.8	48
44	High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Molecular Ecology, 2006, 16, 75-87.	3.9	46
45	Shelterbelts in agricultural landscapes suppress invertebrate pests. Australian Journal of Experimental Agriculture, 2006, 46, 1379.	1.0	45
46	Population Genetic Structure of Aedes (Stegomyia) aegypti (L.) at a Micro-Spatial Scale in Thailand: Implications for a Dengue Suppression Strategy. PLoS Neglected Tropical Diseases, 2013, 7, e1913.	3.0	45
47	Discovery of metabolic resistance to neonicotinoids in green peach aphids (<i>Myzus persicae</i>) in Australia. Pest Management Science, 2017, 73, 1611-1617.	3.4	44
48	Opportunities and challenges in assessing climate change vulnerability through genomics. Cell, 2021, 184, 1420-1425.	28.9	44
49	Biology, ecology and control of the Penthaleus species complex (Acari: Penthaleidae). Experimental and Applied Acarology, 2004, 34, 211-237.	1.6	43
50	Genetic Structure of <i> Aedes aegypti </i> in Australia and Vietnam Revealed by Microsatellite and Exon Primed Intron Crossing Markers Suggests Feasibility of Local Control Options. Journal of Medical Entomology, 2009, 46, 1074-1083.	1.8	42
51	INTENSE SELECTION OF MITE CLONES IN A HETEROGENEOUS ENVIRONMENT. Evolution; International Journal of Organic Evolution, 1998, 52, 1325-1333.	2.3	40
52	Monitoring long-term evolutionary changes following <i>Wolbachia</i> introduction into a novel host: the <i>Wolbachia popcorn</i> infection in <i>Drosophila simulans</i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2059-2068.	2.6	40
53	Tracking genetic invasions: Genomeâ€wide single nucleotide polymorphisms reveal the source of pyrethroidâ€resistant <i>Aedes aegypti</i> (yellow fever mosquito) incursions at international ports. Evolutionary Applications, 2019, 12, 1136-1146.	3.1	40
54	Pests of germinating grain crops in southern Australia: an overview of their biology and management options. Australian Journal of Experimental Agriculture, 2008, 48, 1560.	1.0	35

#	Article	IF	CITATIONS
55	Heterogeneous genetic invasions of three insecticide resistance mutations in Indoâ€Pacific populations of ⟨i⟩Aedes aegypti⟨ i⟩ (L.). Molecular Ecology, 2020, 29, 1628-1641.	3.9	34
56	The biology of Penthaleus species in southeastern Australia. Entomologia Experimentalis Et Applicata, 1999, 92, 179-189.	1.4	33
57	The current status of pesticide resistance in Australian populations of the redlegged earth mite (<i>Halotydeus destructor</i>). Pest Management Science, 2012, 68, 889-896.	3.4	33
58	Frequency-dependent selection maintains clonal diversity in an asexual organism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17872-17877.	7.1	31
59	Identification of aphid species (Hemiptera: Aphididae: Aphidinae) using a rapid polymerase chain reaction restriction fragment length polymorphism method based on the <i>cytochrome oxidase</i> subunit I gene. Australian Journal of Entomology, 2007, 46, 305-312.	1.1	30
60	THE <i>POPCORN</i> WOLBACHIA INFECTION OF <i>DROSOPHILA MELANOGASTER</i> CAN SELECTION ALTER WOLBACHIA LONGEVITY EFFECTS?. Evolution; International Journal of Organic Evolution, 2009, 63, 2648-2657.	2.3	30
61	Population genomics of two invasive mosquitoes (Aedes aegypti and Aedes albopictus) from the Indo-Pacific. PLoS Neglected Tropical Diseases, 2020, 14, e0008463.	3.0	30
62	In search of clinal variation in the period and clock timing genes in Australian Drosophila melanogaster populations. Journal of Evolutionary Biology, 2006, 19, 551-557.	1.7	29
63	Rapid loss of genetic variation in an endangered possum. Biology Letters, 2008, 4, 134-138.	2.3	29
64	Microsatellite loci and the complete mitochondrial DNA sequence characterized through next generation sequencing and de novo genome assembly for the critically endangered orange-bellied parrot, Neophema chrysogaster. Molecular Biology Reports, 2013, 40, 35-42.	2.3	29
65	Contrasting patterns of population connectivity between regions in a commercially important mollusc <i>Haliotis rubra</i> : integrating population genetics, genomics and marine LiDAR data. Molecular Ecology, 2016, 25, 3845-3864.	3.9	29
66	Multispecies models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams. Molecular Ecology, 2021, 30, 3111-3126.	3.9	29
67	Intense Selection of Mite Clones in a Heterogeneous Environment. Evolution; International Journal of Organic Evolution, 1998, 52, 1325.	2.3	28
68	A New Bacterium From The Cytophaga-flavobacterium-Bacteroides Phylum That Causes Sex-ratio Distortion. Contemporary Topics in Entomology Series, 2003, , 165-176.	0.3	28
69	Complex patterns of local adaptation in heat tolerance â€"in <i><scp>D</scp>rosophila simulans</i> from eastern <scp>A</scp> ustralia. Journal of Evolutionary Biology, 2012, 25, 1765-1778.	1.7	27
70	Latitudinal and cold-tolerance variation associate with DNA repeat-number variation in the hsr-omega RNA gene of Drosophila melanogaster. Heredity, 2008, 101, 260-270.	2.6	26
71	Environmental DNA sampling as a surveillance tool for cane toad Rhinella marina introductions on offshore islands. Biological Invasions, 2019, 21, 1-6.	2.4	25
72	Impact of groundcover manipulations within windbreaks on mite pests and their natural enemies. Australian Journal of Entomology, 2011, 50, 37-47.	1.1	20

#	Article	IF	CITATIONS
7 3	Incursion pathways of the <scp>Asian</scp> tiger mosquito (<scp><i>Aedes albopictus</i></scp>) into <scp>Australia</scp> contrast sharply with those of the yellow fever mosquito (<scp><i>Aedes) Tj ETQq1 1 0.784</i></scp>	133144 rgBT	∕Øverlock 10
74	Variation in platypus (Ornithorhynchus anatinus) life-history attributes and population trajectories in urban streams. Australian Journal of Zoology, 2014, 62, 223.	1.0	19
7 5	European newts establish in Australia, marking the arrival of a new amphibian order. Biological Invasions, 2015, 17, 31-37.	2.4	19
76	Population genetics of the wheat curl mite (<i>Aceria tosichella</i> For the management of wheat pathogens. Bulletin of Entomological Research, 2012, 102, 199-212.	1.0	18
77	Emerging pest mites of grains (Balaustium medicagoense and Bryobia sp.) show high levels of tolerance to currently registered pesticides. Australian Journal of Experimental Agriculture, 2008, 48, 1126.	1.0	18
78	GEOGRAPHIC PATTERNS OF CLONAL DIVERSITY IN THE EARTH MITE SPECIES PENTHALEUS MAJOR WITH PARTICULAR EMPHASIS ON SPECIES MARGINS. Evolution; International Journal of Organic Evolution, 2002, 56, 1160-1167.	2.3	17
79	Does Bdellodes lapidaria (Acari: Bdellidae) have a role in biological control of the springtail pest, Sminthurus viridis (Collembola: Sminthuridae) in south-eastern Australia?. Biological Control, 2011, 58, 222-229.	3.0	17
80	Effectiveness of spring spraying targeting diapause egg production for controlling redlegged earth mites and other pests in pasture. Australian Journal of Experimental Agriculture, 2008, 48, 1118.	1.0	14
81	Genetic variation among <i>Helicoverpa armigera (i) populations as assessed by microsatellites: a cautionary tale about accurate allele scoring. Bulletin of Entomological Research, 2010, 100, 445-450.</i>	1.0	14
82	Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia. Conservation Genetics, 2013, 14, 837-853.	1.5	14
83	Molecular and Morphometric Data Indicate a New Species of the Aphid Genus <i>Rhopalosiphum</i> (Hemiptera: Aphididae). Annals of the Entomological Society of America, 2009, 102, 914-924.	2.5	13
84	A species in decline: genetic diversity and conservation of the Victorian eastern barred bandicoot, Perameles gunnii. Conservation Genetics, 2013, 14, 1243-1254.	1.5	13
85	Net-avoidance behaviour in platypuses. Australian Mammalogy, 2013, 35, 245.	1.1	13
86	Patterns of Genetic Variation and Host Adaptation in an Invasive Population of <i>Rhopalosiphum padi</i> (Hemiptera: Aphididae). Annals of the Entomological Society of America, 2010, 103, 886-897.	2.5	12
87	The tolerance of the lucerne flea, <i>Sminthurus viridis</i> (Collembola: Sminthuridae), to currently registered pesticides in Australia. Australian Journal of Entomology, 2009, 48, 241-246.	1.1	11
88	Population Dynamics and Diapause Response of the Springtail Pest Sminthurus viridis (Collembola:) Tj ETQq0 0 0	rgBT /Over	·lock 10 Tf 5
89	An independent non-linear latitudinal cline for the sn-glycerol-3-phosphate (α-Gpdh) polymorphism of Drosophila melanogaster from eastern Australia. Genetical Research, 2006, 87, 13-21.	0.9	10
90	High levels of genetic divergence between Tasmanian and Victorian platypuses, Ornithorhynchus anatinus, as revealed by microsatellite loci. Conservation Genetics, 2010, 11, 319-323.	1.5	10

#	Article	IF	CITATIONS
91	The development of 10 novel polymorphic microsatellite markers through next generation sequencing and a preliminary population genetic analysis for the endangered Glenelg spiny crayfish, Euastacus bispinosus. Molecular Biology Reports, 2013, 40, 4415-4419.	2.3	10
92	Genetic data and climate niche suitability models highlight the vulnerability of a functionally important plant species from southâ€eastern Australia. Evolutionary Applications, 2020, 13, 2014-2029.	3.1	10
93	Accounting for false positive detections in occupancy studies based on environmental DNA: A case study of a threatened freshwater fish (<i>Galaxiella pusilla</i>). Environmental DNA, 2021, 3, 388-397.	5 . 8	10
94	Isolation and characterization of microsatellite loci from the Australian endemic mountain pygmy-possum, Burramys parvus Broom. Molecular Ecology Notes, 2005, 5, 395-397.	1.7	9
95	Genetic structure and long-distance dispersal in populations of the wingless pest springtail, <i>Sminthurus viridis </i> (Collembola: Sminthuridae). Genetical Research, 2011, 93, 1-12.	0.9	9
96	The distribution, abundance and life cycle of the pest mites <i>Balaustium medicagoense</i> (Prostigmata: Erythraeidae) and <i>Bryobia</i> spp. (Prostigmata: Tetranychidae) in Australia. Australian Journal of Entomology, 2011, 50, 22-36.	1.1	9
97	Genetic Markers Indicate a New Species Complex of Emerging Pest Mites in Australian Grains. Annals of the Entomological Society of America, 2011, 104, 402-415.	2.5	9
98	Critically low levels of genetic diversity in fragmented populations of the endangered Glenelg spiny freshwater crayfish Euastacus bispinosus. Endangered Species Research, 2014, 25, 43-55.	2.4	9
99	Coexistence conservation: Reconciling threatened species and invasive predators through adaptive ecological and evolutionary approaches. Conservation Science and Practice, 0, , .	2.0	9
100	Survival and reproduction of the pest mites Balaustium medicagoense and Bryobia spp. on winter grain crops. Experimental and Applied Acarology, 2010, 52, 141-153.	1.6	8
101	Isolation and characterization of microsatellite loci in the avocado thrips Scirtothrips perseae (Thysanoptera: Thripidae). Molecular Ecology Notes, 2005, 5, 644-646.	1.7	7
102	New resource for population genetics studies on the Australasian intertidal brown alga, Hormosira banksii: isolation and characterization of 15 polymorphic microsatellite loci through next generation DNA sequencing. Journal of Applied Phycology, 2017, 29, 1721-1727.	2.8	6
103	Robust clines and robust sampling: a reply to Kyriacou et al Journal of Evolutionary Biology, 2007, 20, 1652-1654.	1.7	5
104	A single panmictic population of endemic red crabs, Gecarcoidea natalis, on Christmas Island with high levels of genetic diversity. Conservation Genetics, 2014, 15, 909.	1.5	5
105	Development of an environmental DNA assay for detecting multiple shark species involved in human–shark conflicts in Australia. Environmental DNA, 2021, 3, 940-949.	5.8	4
106	A molecular method for biomonitoring of an exotic plantâ€pest: Leafmining for environmental DNA. Molecular Ecology, 2021, 30, 4913-4925.	3.9	4
107	The detection and significance of emerging insecticide resistance in mosquitoes. Microbiology Australia, 2018, 39, 80.	0.4	4
108	The development of 24 polymorphic microsatellite loci for the endangered barred galaxias, Galaxias fuscus, through next generation DNA sequencing. Conservation Genetics Resources, 2012, 4, 613-616.	0.8	3

#	Article	IF	CITATIONS
109	Population genetic structure of estuary perch (Percalates colonorum Gunther) in south-eastern Australia. Marine and Freshwater Research, 2021, 72, 263.	1.3	2
110	A high incidence of parthenogenesis in agricultural pests. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 799-800.	2.6	1
111	A field ecologist's guide to environmental DNA sampling in freshwater environments. Australian Zoologist, 2020, 40, 641-651.	1.1	1
112	Understanding and managing the interactive impacts of growth in urban land use and climate change on freshwater biota: a case study using the platypus (Ornithorhynchus anatinus). Global Change Biology, 2021, , .	9.5	1
113	Distribution of Culicoides biting midges (Diptera: Ceratopogonidae) in southern Australia and insight into the Culicoides victoriae morphoâ€variants. Austral Entomology, 2021, 60, 525-534.	1.4	O
114	Australian <i>Bryobia</i> mites (Trombidiformes: Tetranychidae) form a complex of cryptic taxa with unique climatic niches and insecticide responses. Pest Management Science, 2022, , .	3.4	0