Ping-Chih Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8654610/publications.pdf Version: 2024-02-01

Римс-Снин Но

#	Article	IF	CITATIONS
1	Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cellular and Molecular Immunology, 2022, 19, 370-383.	10.5	38
2	PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nature Immunology, 2022, 23, 431-445.	14.5	72
3	Metabolic dynamics instruct CD8 ⁺ Tâ€cell differentiation and functions. European Journal of Immunology, 2022, 52, 541-549.	2.9	15
4	Metabolic programs tailor TÂcell immunity in viral infection, cancer, and aging. Cell Metabolism, 2022, 34, 378-395.	16.2	41
5	The mitochondrial pyruvate carrier regulates memory TÂcell differentiation and antitumor function. Cell Metabolism, 2022, 34, 731-746.e9.	16.2	63
6	Androgen effects cause sex-biased impairment of CD8 ⁺ T cell antitumor activity. Science Immunology, 2022, 7, .	11.9	0
7	IFNα Potentiates Immune-Checkpoint Blockade by Rewiring Metabolic Cross-talk. Cancer Discovery, 2022, 12, 1615-1616.	9.4	1
8	Lipid-loaded macrophages as new therapeutic target in cancer. , 2022, 10, e004584.		13
9	Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cellular and Molecular Immunology, 2021, 18, 1761-1771.	10.5	73
10	Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nature Reviews Immunology, 2021, 21, 151-161.	22.7	330
11	Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunology Research, 2021, 9, 454-469.	3.4	23
12	CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature, 2021, 591, 652-658.	27.8	187
13	Rapid Noninvasive Skin Monitoring by Surface Mass Recording and Data Learning. Jacs Au, 2021, 1, 598-611.	7.9	5
14	Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nature Immunology, 2021, 22, 746-756.	14.5	160
15	PPARÉ£ drives IL-33-dependent ILC2 pro-tumoral functions. Nature Communications, 2021, 12, 2538.	12.8	44
16	Can tumor cells take it all away?. Cell Metabolism, 2021, 33, 1071-1072.	16.2	2
17	Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ TÂcells in tumors. Immunity, 2021, 54, 1561-1577.e7.	14.3	260
18	DCision-making in tumors governs T cell anti-tumor immunity. Oncogene, 2021, 40, 5253-5261.	5.9	22

#	Article	IF	CITATIONS
19	Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. Journal of Experimental Medicine, 2021, 218, .	8.5	31
20	Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nature Immunology, 2021, 22, 1403-1415.	14.5	72
21	Glutamine gluttony of efferocytes. Nature Metabolism, 2021, 3, 1280-1281.	11.9	0
22	Fueling T-cell Antitumor Immunity: Amino Acid Metabolism Revisited. Cancer Immunology Research, 2021, 9, 1373-1382.	3.4	33
23	Challenges and opportunities in 2021. Nature Cancer, 2021, 2, 1278-1283.	13.2	1
24	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	28.8	190
25	miR-155 Overexpression in OT-1 CD8+ T Cells Improves Anti-Tumor Activity against Low-Affinity Tumor Antigen. Molecular Therapy - Oncolytics, 2020, 16, 111-123.	4.4	15
26	Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nature Immunology, 2020, 21, 1540-1551.	14.5	252
27	Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature, 2020, 587, 626-631.	27.8	119
28	Metabolic and epigenetic regulation of T-cell exhaustion. Nature Metabolism, 2020, 2, 1001-1012.	11.9	167
29	The hidden side of PD-L1. Nature Cell Biology, 2020, 22, 1031-1032.	10.3	7
30	A mouse SWATH-MS reference spectral library enables deconvolution of species-specific proteomic alterations in human tumour xenografts. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	16
31	ER Stress Responses: An Emerging Modulator for Innate Immunity. Cells, 2020, 9, 695.	4.1	130
32	Metabolic adaptation orchestrates tissue contextâ€dependent behavior in regulatory T cells. Immunological Reviews, 2020, 295, 126-139.	6.0	5
33	Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR- and CD8î±î²-engineered human CD4 ⁺ T cells. Science Advances, 2020, 6, eaaz7809.	10.3	24
34	CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nature Immunology, 2020, 21, 298-308.	14.5	326
35	Firing Up Cold Tumors. Trends in Cancer, 2019, 5, 528-530.	7.4	6
36	Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. , 2019, 7, 172.		26

#	Article	IF	CITATIONS
37	Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. , 2019, 7, 257.		120
38	Fifty Shades of α-Ketoglutarate on Cellular Programming. Molecular Cell, 2019, 76, 1-3.	9.7	29
39	Tape-Stripping Electrochemical Detection of Melanoma. Analytical Chemistry, 2019, 91, 12900-12908.	6.5	21
40	Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nature Immunology, 2019, 20, 206-217.	14.5	51
41	Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 425-441.	27.6	452
42	The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell, 2019, 24, 405-418.e7.	11.1	143
43	Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting. Clinical and Experimental Immunology, 2019, 197, 153-160.	2.6	48
44	Shp-2 is critical for ERK and metabolic engagement downstream of IL-15 receptor in NK cells. Nature Communications, 2019, 10, 1444.	12.8	29
45	CD56 as a marker of an ILC1-like population with NK cell properties that is functionally impaired in AML. Blood Advances, 2019, 3, 3674-3687.	5.2	40
46	Determining Macrophage Polarization upon Metabolic Perturbation. Methods in Molecular Biology, 2019, 1862, 173-186.	0.9	17
47	Metabolic adaptation of macrophages in chronic diseases. Cancer Letters, 2018, 414, 250-256.	7.2	7
48	Mitochondria: A master regulator in macrophage and T cell immunity. Mitochondrion, 2018, 41, 45-50.	3.4	45
49	Sparks Fly in PGE2-Modulated Macrophage Polarization. Immunity, 2018, 49, 987-989.	14.3	4
50	The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nature Immunology, 2018, 19, 809-820.	14.5	42
51	Immunometabolism in cancer at a glance. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	70
52	A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nature Medicine, 2018, 24, 994-1004.	30.7	783
53	Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Current Opinion in Immunology, 2017, 46, 38-44.	5.5	40
54	Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy. Trends in Cancer, 2017, 3, 583-592.	7.4	151

#	Article	IF	CITATIONS
55	α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunology, 2017, 18, 985-994.	14.5	715
56	Mitochondrial Control and Guidance of Cellular Activities of T Cells. Frontiers in Immunology, 2017, 8, 473.	4.8	33
57	Editorial: Immunometabolic Regulations in Adaptive and Innate Immune Cells Shapes and Re-Directs Host Immunity. Frontiers in Immunology, 2017, 8, 852.	4.8	1
58	Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner. Scientific Reports, 2016, 6, 39117.	3.3	25
59	Regulatory circuits of T cell function in cancer. Nature Reviews Immunology, 2016, 16, 599-611.	22.7	445
60	Metabolic communication in tumors: a new layer of immunoregulation for immune evasion. , 2016, 4, 4.		105
61	Metabolic tug-of-war in tumors results in diminished T cell antitumor immunity. Oncolmmunology, 2016, 5, e1119355.	4.6	2
62	IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8+ T Cell Longevity. Cell, 2015, 161, 750-761.	28.9	268
63	The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity, 2015, 43, 690-702.	14.3	252
64	Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell, 2015, 162, 1217-1228.	28.9	1,044
65	BRAF-targeted therapy alters the functions of intratumoral CD4+T cells to inhibit melanoma progression. Oncolmmunology, 2014, 3, e29126.	4.6	5
66	Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFNÎ ³ . Cancer Research, 2014, 74, 3205-3217.	0.9	107
67	NF-ήB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nature Immunology, 2012, 13, 379-386.	14.5	102
68	Negative regulation of adiponectin secretion by receptor interacting protein 140 (RIP140). Cellular Signalling, 2012, 24, 71-76.	3.6	20
69	Endothelin-1 promotes cytoplasmic accumulation of RIP140 through a ETA–PLCβ–PKCε pathway. Molecular and Cellular Endocrinology, 2012, 351, 176-183.	3.2	9
70	Biological Activities of Receptor-interacting Protein 140 in Adipocytes and Metabolic Diseases. Current Diabetes Reviews, 2012, 8, 452-457.	1.3	15
71	Cytoplasmic receptor-interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. Cellular Signalling, 2011, 23, 1396-1403.	3.6	29
72	Cholesterol regulation of receptorâ€interacting protein 140 <i>via</i> microRNAâ€33 in inflammatory cytokine production. FASEB Journal, 2011, 25, 1758-1766.	0.5	70

#	Article	IF	CITATIONS
73	A Negative Regulatory Pathway of GLUT4 Trafficking in Adipocyte: New Function of RIP140 in the Cytoplasm via AS160. Cell Metabolism, 2009, 10, 516-523.	16.2	62
74	Retinoic Acid Induced nuclear localization of HDAC3. FASEB Journal, 2009, 23, 215.6.	0.5	0
75	Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation. Cellular Signalling, 2008, 20, 1911-1919.	3.6	40