
Anders Tingberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8654459/publications.pdf Version: 2024-02-01

ANDERS TINCRERC

#	Article	IF	CITATIONS
1	Science and practice of imaging physics through 50 years of SPIE Medical Imaging conferences. Journal of Medical Imaging, 2022, 9, 012205.	1.5	2
2	Simulation of volumetric breast densities for virtual clinical trials. , 2022, , .		0
3	Virtual clinical trial of simultaneous digital breast tomosynthesis and mechanical imaging: model calibration and the effect of tumor depth. , 2022, , .		1
4	Finite element model of mechanical imaging of the breast. Journal of Medical Imaging, 2022, 9, .	1.5	2
5	Development and evaluation of a method for tumor growth simulation in virtual clinical trials of breast cancer screening. Journal of Medical Imaging, 2022, 9, .	1.5	2
6	Development and content validity evaluation of a candidate instrument to assess image quality in digital mammography: A mixed-method study. European Journal of Radiology, 2021, 134, 109464.	2.6	1
7	How does image quality affect radiologists' perceived ability for image interpretation and lesion detection in digital mammography?. European Radiology, 2021, 31, 5335-5343.	4.5	9
8	Computer model of mechanical imaging acquisition for virtual clinical trials. , 2021, , .		1
9	Dose-length-product determination on cone beam computed tomography through experimental measurements and dose-area-product conversion. , 2021, , .		1
10	Assessment of a tumour growth model for virtual clinical trials of breast cancer screening. , 2021, , .		4
11	VIRTUAL CLINICAL TRIALS IN MEDICAL IMAGING SYSTEM EVALUATION AND OPTIMISATION. Radiation Protection Dosimetry, 2021, 195, 363-371.	0.8	22
12	Validation of a candidate instrument to assess image quality in digital mammography using ROC analysis. European Journal of Radiology, 2021, 139, 109686.	2.6	5
13	Artificial Intelligence Detection of Missed Cancers at Digital Mammography That Were Detected at Digital Breast Tomosynthesis. Radiology: Artificial Intelligence, 2021, 3, e200299.	5.8	9
14	Comparison of image quality in chest, hip and pelvis examinations between mobile equipment in nursing homes and static indirect radiography equipment in the hospital. Radiography, 2020, 26, e31-e37.	2.1	8
15	Evaluation of Image Quality for 7 Iterative Reconstruction Algorithms in Chest Computed Tomography Imaging: A Phantom Study. Journal of Computer Assisted Tomography, 2020, 44, 673-680.	0.9	9
16	The effect of breast density on the performance of deep learning-based breast cancer detection methods for mammography. , 2020, , .		2
17	ldentifying and modelling clinical subpopulations from the Malmö breast tomosynthesis screening trial. , 2020, , .		1
18	Personalised breast cancer screening with selective addition of digital breast tomosynthesis through artificial intelligence. , 2020, , .		0

#	Article	IF	CITATIONS
19	Evaluation of a flat fielding method for simultaneous DBT and MI acquisition. , 2020, , .		1
20	Artificial intelligence together with mechanical imaging in mammography. , 2020, , .		0
21	Pre-processing for image quality improvement in simultaneous DBT and mechanical imaging. , 2020, , .		0
22	Evaluation of digital breast tomosynthesis systems. , 2020, , .		0
23	CAN SCATTER CORRECTION SOFTWARE REPLACE A GRID IN DR PELVIC EXAMINATIONS?. Radiation Protection Dosimetry, 2019, 187, 8-16.	0.8	9
24	Does software optimization influence the radiologists' perception in low dose paediatric pelvic examinations?. Radiography, 2019, 25, 143-147.	2.1	8
25	One-view breast tomosynthesis vs two-view mammography: a methodological issue – Authors' reply. Lancet Oncology, The, 2019, 20, e7.	10.7	3
26	Artifact reduction in simultaneous tomosynthesis and mechanical imaging of the breast. , 2019, , .		0
27	Quantitative Measurements Versus Receiver Operating Characteristics and Visual Grading Regression in CT Images Reconstructed with Iterative Reconstruction. Academic Radiology, 2018, 25, 509-518.	2.5	8
28	Evaluation of an iterative model-based reconstruction of pediatric abdominal CT with regard to image quality and radiation dose. Acta Radiologica, 2018, 59, 740-747.	1.1	6
29	One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study. Lancet Oncology, The, 2018, 19, 1493-1503.	10.7	119
30	Towards determination of individual glandular dose. , 2018, , .		0
31	Improvements to image quality using hybrid and model-based iterative reconstructions: a phantom study. Acta Radiologica, 2017, 58, 53-61.	1.1	19
32	Can mechanical imaging increase the specificity of mammography screening?. European Radiology, 2017, 27, 3217-3225.	4.5	9
33	Image Quality in Oncologic Chest Computerized Tomography With Iterative Reconstruction. Journal of Computer Assisted Tomography, 2016, 40, 351-356.	0.9	9
34	Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images. , 2016, , .		2
35	MODEL-BASED ITERATIVE RECONSTRUCTION ENABLES THE EVALUATION OF THIN-SLICE COMPUTED TOMOGRAPHY IMAGES WITHOUT DEGRADING IMAGE QUALITY OR INCREASING RADIATION DOSE. Radiation Protection Dosimetry, 2016, 169, 100-106.	0.8	10
36	VALIDATION OF A SIMULATION PROCEDURE FOR GENERATING BREAST TOMOSYNTHESIS PROJECTION IMAGES. Radiation Protection Dosimetry, 2016, 169, 386-391.	0.8	2

#	Article	IF	CITATIONS
37	Improved Liver Lesion Conspicuity With Iterative Reconstruction in Computed Tomography Imaging. Current Problems in Diagnostic Radiology, 2016, 45, 291-296.	1.4	8
38	Performance of one-view breast tomosynthesis as a stand-alone breast cancer screening modality: results from the Malmö Breast Tomosynthesis Screening Trial, a population-based study. European Radiology, 2016, 26, 184-190.	4.5	228
39	The Characteristics of Malignant Breast Tumors Imaged Using a Prototype Mechanical Imaging System as an Adjunct to Mammography. Lecture Notes in Computer Science, 2016, , 282-288.	1.3	0
40	Monte Carlo simulation of breast tomosynthesis: visibility of microcalcifications at different acquisition schemes. Proceedings of SPIE, 2015, , .	0.8	1
41	Model based iterative reconstruction IMR gives possibility to evaluate thinner slice thicknesses than conventional iterative reconstruction iDose4: a phantom study. , 2015, , .		0
42	Application of the fractal Perlin noise algorithm for the generation of simulated breast tissue. Proceedings of SPIE, 2015, , .	0.8	6
43	Comparing five different iterative reconstruction algorithms for computed tomography in an ROC study. European Radiology, 2014, 24, 2989-3002.	4.5	44
44	Large dose reduction by optimization of multifrequency processing software in digital radiography at follow-up examinations of the pediatric femur. Pediatric Radiology, 2014, 44, 239-240.	2.0	9
45	New Developed DR Detector Performs Radiographs of Hand, Pelvic and Premature Chest Anatomies at a Lower Radiation Dose and/or a Higher Image Quality. Journal of Digital Imaging, 2014, 27, 68-76.	2.9	15
46	Image Quality of Thick Average Intensity Pixel Slabs Using Statistical Artifact Reduction in Breast Tomosynthesis. Lecture Notes in Computer Science, 2014, , 544-549.	1.3	0
47	Investigation of viewing procedures for interpretation of breast tomosynthesis image volumes: a detection-task study with eye tracking. European Radiology, 2013, 23, 997-1005.	4.5	11
48	No evidence for shedding of circulating tumor cells to the peripheral venous blood as a result of mammographic breast compression. Breast Cancer Research and Treatment, 2013, 141, 187-195.	2.5	22
49	Suspension criteria for image monitors and viewing boxes. Radiation Protection Dosimetry, 2013, 153, 230-235.	0.8	3
50	Pressure distribution in mammography: compression of breasts with malignant tumor masses. , 2013, , .		4
51	A study of the feasibility of using slabbing to reduce tomosynthesis review time. Proceedings of SPIE, 2013, , .	0.8	5
52	Breast compression in mammography: pressure distribution patterns. Acta Radiologica, 2012, 53, 973-980.	1.1	45
53	The effect of breast positioning on breast compression in mammography: a pressure distribution perspective. Proceedings of SPIE, 2012, , .	0.8	7
54	Visibility of microcalcification clusters and masses in breast tomosynthesis image volumes and digital mammography: A 4AFC human observer study. Medical Physics, 2012, 39, 2431-2437.	3.0	52

#	Article	IF	CITATIONS
55	Digital radiography: optimization of image quality and dose using multi-frequency software. Pediatric Radiology, 2012, 42, 1112-1118.	2.0	21
56	Optimizing viewing procedures of breast tomosynthesis image volumes using eye tracking combined with a free response human observer study. Proceedings of SPIE, 2011, , .	0.8	4
57	Can horizontally oriented breast tomosynthesis image volumes or the use of a systematic search strategy improve interpretation? An eye tracking and free response human observer study. , 2011, , .		0
58	A human observer study for evaluation and optimization of reconstruction methods in breast tomosynthesis using clinical cases. , 2011, , .		1
59	Digital mammography and tomosynthesis for breast cancer diagnosis. Expert Opinion on Medical Diagnostics, 2011, 5, 517-526.	1.6	12
60	Breast cancer screening with tomosynthesisinitial experiences. Radiation Protection Dosimetry, 2011, 147, 180-183.	0.8	27
61	Inâ€plane visibility of lesions using breast tomosynthesis and digital mammography. Medical Physics, 2010, 37, 5618-5626.	3.0	30
62	The effect of reduced breast compression in breast tomosynthesis: human observer study using clinical cases. Radiation Protection Dosimetry, 2010, 139, 118-123.	0.8	42
63	A phantom study showing the importance of compression in conventional diagnostic X-ray examinations. Radiation Protection Dosimetry, 2010, 139, 78-80.	0.8	5
64	The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer performance study. Radiation Protection Dosimetry, 2010, 139, 113-117.	0.8	70
65	X-ray tomosynthesis: a review of its use for breast and chest imaging. Radiation Protection Dosimetry, 2010, 139, 100-107.	0.8	64
66	Breast tomosynthesis: Accuracy of tumor measurement compared with digital mammography and ultrasonography. Acta Radiologica, 2010, 51, 240-247.	1.1	128
67	Mass detection in breast tomosynthesis and digital mammography: a model observer study. , 2009, , .		9
68	Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility and BIRADS classification in a population of cancers with subtle mammographic findings. European Radiology, 2008, 18, 2817-2825.	4.5	319
69	Impact of dose on observer performance in breast tomosynthesis using breast specimens. , 2008, , .		5
70	BIRADS Classification in Breast Tomosynthesis Compared to Mammography and Ultrasonography. Lecture Notes in Computer Science, 2008, , 67-73.	1.3	6
71	Dose dependence of mass and microcalcification detection in digital mammography: Free response human observer studies. Medical Physics, 2007, 34, 400-407.	3.0	72
72	Improved in-plane visibility of tumors using breast tomosynthesis. , 2007, , .		8

5

#	Article	IF	CITATIONS
73	In-plane artifacts in breast tomosynthesis quantified with a novel contrast-detail phantom. , 2007, , .		7
74	Optimization of image quality in breast tomosynthesis using lumpectomy and mastectomy specimens. , 2007, , .		5
75	Dose reduction and its influence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study using an anthropomorphic breast phantom. British Journal of Radiology, 2007, 80, 557-562.	2.2	18
76	Potential for lower absorbed dose in digital mammography: A JAFROC experiment using clinical hybrid images with simulated dose reduction. , 2006, , .		6
77	Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Medical Physics, 2006, 33, 4169-4175.	3.0	46
78	Detectability of pathological lesions in lumbar spine radiography. , 2005, 5749, 518.		1
79	Shape determination of microcalcifications in simulated digital mammography images with varying pixel size. , 2005, 5749, 288.		0
80	Investigation of image components affecting the detection of lung nodules in digital chest radiography. , 2005, 5749, 231.		5
81	Using simple mathematical functions to simulate pathological structures—input for digital mammography clinical trial. Radiation Protection Dosimetry, 2005, 114, 424-431.	0.8	19
82	Can the average glandular dose in routine digital mammography screening be reduced? a pilot study using revised image quality criteria. Radiation Protection Dosimetry, 2005, 114, 383-388.	0.8	22
83	Nodule detection in digital chest radiography: introduction to the RADIUS chest trial. Radiation Protection Dosimetry, 2005, 114, 85-91.	0.8	46
84	Clinical evaluation of a new set of image quality criteria for mammography. Radiation Protection Dosimetry, 2005, 114, 389-394.	0.8	14
85	Nodule detection in digital chest radiography: summary of the RADIUS chest trial. Radiation Protection Dosimetry, 2005, 114, 114-120.	0.8	50
86	Inter-observer variation in masked and unmasked images for quality evaluation of clinical radiographs. Radiation Protection Dosimetry, 2005, 114, 62-68.	0.8	7
87	Threshold pixel size for shape determination of microcalcifications in digital mammography: a pilot study. Radiation Protection Dosimetry, 2005, 114, 415-423.	0.8	12
88	A software tool for increased efficiency in observer performance studies in radiology. Radiation Protection Dosimetry, 2005, 114, 45-52.	0.8	139
89	Evaluation of image quality of lumbar spine images: a comparison between FFE and VGA. Radiation Protection Dosimetry, 2005, 114, 53-61.	0.8	37
90	Optimisation of image plate radiography with respect to tube voltage. Radiation Protection Dosimetry, 2005, 114, 286-293.	0.8	52

#	Article	IF	CITATIONS
91	Method of simulating dose reduction for digital radiographic systems. Radiation Protection Dosimetry, 2005, 114, 253-259.	0.8	59
92	Influence of the characteristic curve on the clinical image quality of lumbar spine and chest radiographs. British Journal of Radiology, 2004, 77, 204-215.	2.2	26
93	The use of reference image criteria in X-ray diagnostics: an application for the optimisation of lumbar spine radiographs. European Radiology, 2004, 14, 1561-7.	4.5	28
94	Comparison of two methods for evaluation of image quality of lumbar spine radiographs. , 2004, 5372, 251.		10
95	Search for optimal tube voltage for image plate radiography. , 2003, 5034, 187.		10
96	The influence of different technique factors on image quality of chest radiographs as evaluated by modified CEC image quality criteria. British Journal of Radiology, 2002, 75, 38-49.	2.2	53
97	<title>What is worse: decreased spatial resolution or increased noise?</title> . , 2002, 4686, 338.		11
98	<title>Influence of the characteristic curve on the clinical image quality and patient absorbed dose in
lumbar spine radiography</title> . , 2001, , .		5
99	Demonstration of correlations between clinical and physical image quality measures in chest and lumbar spine screen–film radiography. British Journal of Radiology, 2001, 74, 520-528.	2.2	36
100	<title>Evaluation of lumbar spine images with added pathology</title> . , 2000, , .		17
101	Simulation of Nodule-like Pathology in Radiographs of the Lumbar Spine. Radiation Protection Dosimetry, 2000, 90, 113-116.	0.8	3
102	The Influence of Different Technique Factors on Image Quality for Chest Radiographys: Application of the Recent CEC Image Quality Criteria. Radiation Protection Dosimetry, 2000, 90, 203-206.	0.8	6
103	The influence of different technique factors on image quality of lumbar spine radiographs as evaluated by established CEC image criteria British Journal of Radiology, 2000, 73, 1192-1199.	2.2	51