List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular vesicles in vascular remodeling. Acta Pharmacologica Sinica, 2022, 43, 2191-2201.	6.1	17
2	Chronic infusion of ELABELA alleviates vascular remodeling in spontaneously hypertensive rats via anti-inflammatory, anti-oxidative and anti-proliferative effects. Acta Pharmacologica Sinica, 2022, 43, 2573-2584.	6.1	13
3	Impact of Selective Renal Afferent Denervation on Oxidative Stress and Vascular Remodeling in Spontaneously Hypertensive Rats. Antioxidants, 2022, 11, 1003.	5.1	10
4	Upregulated expression of NMDA receptor in the paraventricular nucleus shortens ejaculation latency in rats with experimental autoimmune prostatitis. Andrology, 2021, 9, 352-360.	3.5	4
5	Adrenomedullin AttenuatesÂInflammation inÂWhite Adipose TissueÂof Obese Rats Through Receptorâ€Mediated PKA Pathway. Obesity, 2021, 29, 86-97.	3.0	8
6	Central Blockade of E-Prostanoid 3 Receptor Ameliorated Hypertension Partially by Attenuating Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus of Spontaneously Hypertensive Rats. Cardiovascular Toxicology, 2021, 21, 286-300.	2.7	12
7	Prostate-derived IL-1β upregulates expression of NMDA receptor in the paraventricular nucleus and shortens ejaculation latency in rats with experimental autoimmune prostatitis. Asian Journal of Andrology, 2021, .	1.6	1
8	Nrf1 Knock-Down in the Hypothalamic Paraventricular Nucleus Alleviates Hypertension Through Intervention of Superoxide Production-Removal Balance and Mitochondrial Function. Cardiovascular Toxicology, 2021, 21, 472-489.	2.7	8
9	Chronic Infusion of Astaxanthin Into Hypothalamic Paraventricular Nucleus Modulates Cytokines and Attenuates the Renin–Angiotensin System in Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2021, 77, 170-181.	1.9	6
10	Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacologica Sinica, 2021, 42, 1798-1807.	6.1	19
11	Apelin receptor upregulation in spontaneously hypertensive rat contributes to the enhanced vascular smooth muscle cell proliferation by activating autophagy. Annals of Translational Medicine, 2021, 9, 627-627.	1.7	9
12	Dysregulation of the Excitatory Renal Reflex in the Sympathetic Activation of Spontaneously Hypertensive Rat. Frontiers in Physiology, 2021, 12, 673950.	2.8	4
13	Apigenin Improves Hypertension and Cardiac Hypertrophy Through Modulating NADPH Oxidase-Dependent ROS Generation and Cytokines in Hypothalamic Paraventricular Nucleus. Cardiovascular Toxicology, 2021, 21, 721-736.	2.7	22
14	miR-31-5p Promotes Oxidative Stress and Vascular Smooth Muscle Cell Migration in Spontaneously Hypertensive Rats via Inhibiting FNDC5 Expression. Biomedicines, 2021, 9, 1009.	3.2	13
15	Salusin-Î ² in Intermediate Dorsal Motor Nucleus of the Vagus Regulates Sympathetic-Parasympathetic Balance and Blood Pressure. Biomedicines, 2021, 9, 1118.	3.2	4
16	Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vascular Pharmacology, 2021, 140, 106864.	2.1	15
17	Bilateral Paraventricular Nucleus Upregulation of Extracellular Superoxide Dismutase Decreases Blood Pressure by Regulation of the NLRP3 and Neurotransmitters in Salt-Induced Hypertensive Rats. Frontiers in Pharmacology, 2021, 12, 756671.	3.5	9
18	RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biology, 2021, 48, 102204.	9.0	21

#	Article	IF	CITATIONS
19	Blockade of c-Src Within the Paraventricular Nucleus Attenuates Inflammatory Cytokines and Oxidative Stress in the Mechanism of the TLR4 Signal Pathway in Salt-Induced Hypertension. Neuroscience Bulletin, 2020, 36, 385-395.	2.9	12
20	Chemical Stimulation of Renal Tissue Induces Sympathetic Activation and a Pressor Response via the Paraventricular Nucleus in Rats. Neuroscience Bulletin, 2020, 36, 143-152.	2.9	19
21	Inhibition of Hypothalamic Inhibitor κB Kinase β/Nuclear Transcription Factor κB Pathway Attenuates Metabolism and Cardiac Dysfunction in Type 2 Diabetic Rats. Neuroendocrinology, 2020, 110, 899-913.	2.5	9
22	MiR155â€5p in adventitial fibroblastsâ€derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensinâ€converting enzyme expression. Journal of Extracellular Vesicles, 2020, 9, 1698795.	12.2	89
23	Interleukin-1β in hypothalamic paraventricular nucleus mediates excitatory renal reflex. Pflugers Archiv European Journal of Physiology, 2020, 472, 1577-1586.	2.8	8
24	Irisin lowers blood pressure by activating the Nrf2 signaling pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Toxicology and Applied Pharmacology, 2020, 394, 114953.	2.8	27
25	Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicology and Applied Pharmacology, 2020, 394, 114950.	2.8	22
26	MiR155-5p Inhibits Cell Migration and Oxidative Stress in Vascular Smooth Muscle Cells of Spontaneously Hypertensive Rats. Antioxidants, 2020, 9, 204.	5.1	22
27	Angiotensin Type 1 Receptors and Superoxide Anion Production in Hypothalamic Paraventricular Nucleus Contribute to Capsaicin-Induced Excitatory Renal Reflex and Sympathetic Activation. Neuroscience Bulletin, 2020, 36, 463-474.	2.9	14
28	FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells via Activating the AMPK-SIRT1 Signal Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	30
29	Adipose afferent reflex is enhanced by TNFα in paraventricular nucleus through NADPH oxidase-dependent ROS generation in obesity-related hypertensive rats. Journal of Translational Medicine, 2019, 17, 256.	4.4	21
30	FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation. Vascular Pharmacology, 2019, 121, 106579.	2.1	29
31	Effects of mu opioid receptors in paraventricular nucleus on ejaculation through mediating sympathetic nerve system activity. Neuropharmacology, 2019, 158, 107709.	4.1	7
32	Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFήB-mediated NLRP3 expression in spontaneously hypertensive rats. Journal of Nutritional Biochemistry, 2019, 72, 108212.	4.2	29
33	BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	4.0	21
34	Silencing salusin β ameliorates heart failure in aged spontaneously hypertensive rats by ROS-relative MAPK/NF-κB pathways in the paraventricular nucleus. International Journal of Cardiology, 2019, 280, 142-151.	1.7	24
35	Chronic Intracerebroventricular Infusion of Metformin Inhibits Salt-Sensitive Hypertension via Attenuation of Oxidative Stress and Neurohormonal Excitation in Rat Paraventricular Nucleus. Neuroscience Bulletin, 2019, 35, 57-66.	2.9	15
36	Chronic infusion of berberine into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation via the ROS/Erk1/2/iNOS pathway. Phytomedicine, 2019, 52, 216-224.	5.3	27

#	Article	IF	CITATIONS
37	Blockade of Endogenous Angiotensin-(1–7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension. Neuroscience Bulletin, 2019, 35, 47-56.	2.9	16
38	Intermedin in Paraventricular Nucleus Attenuates Sympathoexcitation and Decreases TLR4-Mediated Sympathetic Activation via Adrenomedullin Receptors in Rats with Obesity-Related Hypertension. Neuroscience Bulletin, 2019, 35, 34-46.	2.9	14
39	FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism: Clinical and Experimental, 2018, 83, 31-41.	3.4	105
40	Blockade of TLR4 Within the Paraventricular Nucleus Attenuates Blood Pressure by Regulating ROS and Inflammatory Cytokines in Prehypertensive Rats. American Journal of Hypertension, 2018, 31, 1013-1023.	2.0	28
41	Exercise Training Attenuates Proinflammatory Cytokines, Oxidative Stress and Modulates Neurotransmitters in the Rostral Ventrolateral Medulla of Salt-Induced Hypertensive Rats. Cellular Physiology and Biochemistry, 2018, 48, 1369-1381.	1.6	14
42	Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats. International Journal of Molecular Sciences, 2018, 19, 59.	4.1	17
43	Fibronectin Type III Domain-Containing 5 Attenuates Liver Fibrosis Via Inhibition of Hepatic Stellate Cell Activation. Cellular Physiology and Biochemistry, 2018, 48, 227-236.	1.6	13
44	Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior. Asian Journal of Andrology, 2018, 20, 355.	1.6	13
45	PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress. Scientific Reports, 2017, 7, 43038.	3.3	19
46	Silencing salusin- \hat{l}^2 attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Scientific Reports, 2017, 7, 43259.	3.3	24
47	Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicology Letters, 2017, 270, 62-71.	0.8	34
48	Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death and Disease, 2017, 8, e2690-e2690.	6.3	67
49	Renin-angiotensin system acting on reactive oxygen species in paraventricular nucleus induces sympathetic activation via AT1R/PKCγ/Rac1 pathway in salt-induced hypertension. Scientific Reports, 2017, 7, 43107.	3.3	32
50	NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death and Disease, 2017, 8, e3074-e3074.	6.3	179
51	Tert-butylhydroquinone attenuates oxidative stress and inflammation in hypothalamic paraventricular nucleus in high salt-induced hypertension. Toxicology Letters, 2017, 281, 1-9.	0.8	31
52	BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription. Cell Death and Disease, 2017, 8, e3156-e3156.	6.3	33
53	NLRP3 Gene Deletion Attenuates Angiotensin II-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Vascular Remodeling. Cellular Physiology and Biochemistry, 2017, 44, 2269-2280.	1.6	88
54	Chronic infusion of epigallocatechin-3- O -gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines. Toxicology Letters, 2016, 262, 105-113.	0.8	29

#	Article	IF	CITATIONS
55	FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes, 2016, 65, 3262-3275.	0.6	114
56	TLR4/MyD88/NF-κB signaling and PPAR-γ within the paraventricular nucleus are involved in the effects of telmisartan in hypertension. Toxicology and Applied Pharmacology, 2016, 305, 93-102.	2.8	48
57	Exercise training attenuates renovascular hypertension partly via RAS- ROS- glutamate pathway in the hypothalamic paraventricular nucleus. Scientific Reports, 2016, 6, 37467.	3.3	21
58	β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Scientific Reports, 2016, 6, 21924.	3.3	73
59	Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Scientific Reports, 2016, 6, 34374.	3.3	25
60	Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Scientific Reports, 2016, 6, 23596.	3.3	40
61	Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus. Scientific Reports, 2016, 6, 30301.	3.3	20
62	Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology, 2016, 103, 247-256.	4.1	36
63	Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury <i>via</i> ROS/NFκB/MMP-9 Pathway. Antioxidants and Redox Signaling, 2016, 24, 1045-1057.	5.4	94
64	Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension. Cardiovascular Toxicology, 2016, 16, 276-285.	2.7	15
65	Salusin β Within the Nucleus Tractus Solitarii Suppresses Blood Pressure Via Inhibiting the Activities of Presympathetic Neurons in the Rostral Ventrolateral Medulla in Spontaneously Hypertensive Rats. Cardiovascular Toxicology, 2016, 16, 223-234.	2.7	5
66	Central blockade of salusin \hat{l}^2 attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Scientific Reports, 2015, 5, 11162.	3.3	50
67	Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in typeÂ2 diabetic mice and hepatocytes. Clinical Science, 2015, 129, 839-850.	4.3	263
68	Blockade of Salusin-β in Hypothalamic Paraventricular Nucleus Attenuates Hypertension and Cardiac Hypertrophy in Salt-induced Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2015, 66, 323-331.	1.9	19
69	GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats. PLoS ONE, 2015, 10, e0136983.	2.5	12
70	Salusin-Î ² contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1709-1718.	3.8	63
71	FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1867-1875.	3.8	168
72	Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicology and Applied Pharmacology, 2015, 284, 315-322.	2.8	56

#	Article	IF	CITATIONS
73	Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicology Letters, 2015, 235, 206-215.	0.8	34
74	Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and Î ³ -amino butyric acid in hypertensive rats. Experimental Biology and Medicine, 2014, 239, 1352-1359.	2.4	4
75	Hypothalamic paraventricular nucleus activation contributes to neurohumoral excitation in rats with heart failure. Regenerative Medicine Research, 2014, 2, 2.	2.5	22
76	Transneuronal tracing of central autonomic regions involved in cardiac sympathetic afferent reflex in rats. Journal of the Neurological Sciences, 2014, 342, 45-51.	0.6	14
77	Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 2014, 276, 115-120.	2.8	78
78	Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicology and Applied Pharmacology, 2014, 274, 436-444.	2.8	43
79	Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 2014, 279, 141-149.	2.8	53
80	Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats. Toxicology and Applied Pharmacology, 2014, 281, 101-108.	2.8	52
81	Exercise Training Attenuates Hypertension and Cardiac Hypertrophy by Modulating Neurotransmitters and Cytokines in Hypothalamic Paraventricular Nucleus. PLoS ONE, 2014, 9, e85481.	2.5	43
82	Superoxide Anions in Paraventricular Nucleus Modulate Adipose Afferent Reflex and Sympathetic Activity in Rats. PLoS ONE, 2013, 8, e83771.	2.5	17
83	Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. Journal of Applied Physiology, 2011, 110, 646-652.	2.5	49
84	Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Experimental Physiology, 2009, 94, 785-794.	2.0	51
85	Blood pressure resetting with a chip system in hypertensive rats. FASEB Journal, 2006, 20, A308.	0.5	Ο
86	Relationship between reactive oxygen species and Angiotensin II in modulating cardiac sympathetic afferent reflex in rats. FASEB Journal, 2006, 20, A1208.	0.5	0
87	ANG II in the paraventricular nucleus potentiates the cardiac sympathetic afferent reflex in rats with heart failure. Journal of Applied Physiology, 2004, 97, 1746-1754.	2.5	78
88	Reduced nitric oxide in the rostral ventrolateral medulla enhances cardiac sympathetic afferent reflex in rats with chronic heart failure. Acta Physiologica Sinica, 2004, 56, 47-53.	0.5	5