
Dylan B Millet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8653543/publications.pdf Version: 2024-02-01

DVIAN R MILLET

#	Article	IF	CITATIONS
1	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	27.8	814
2	National Patterns in Environmental Injustice and Inequality: Outdoor NO2 Air Pollution in the United States. PLoS ONE, 2014, 9, e94431.	2.5	308
3	Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 3405-3425.	4.9	278
4	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.	4.9	266
5	Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics, 2014, 14, 2679-2698.	4.9	259
6	Global Estimates of Inorganic Nitrogen Deposition Across Four Decades. Global Biogeochemical Cycles, 2019, 33, 100-107.	4.9	249
7	Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. Journal of Geophysical Research, 2008, 113, .	3.3	234
8	Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmospheric Chemistry and Physics, 2015, 15, 10411-10433.	4.9	217
9	A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.	4.9	197
10	Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission. Journal of Geophysical Research, 2006, 111, .	3.3	172
11	Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. Journal of Geophysical Research, 2005, 110, .	3.3	168
12	lsoprene emissions in Africa inferred from OMI observations of formaldehyde columns. Atmospheric Chemistry and Physics, 2012, 12, 6219-6235.	4.9	166
13	The weekend effect within and downwind of Sacramento – Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity. Atmospheric Chemistry and Physics, 2007, 7, 5327-5339.	4.9	161
14	New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmospheric Chemistry and Physics, 2008, 8, 6887-6905.	4.9	160
15	Nitrous oxide emissions are enhanced in a warmer and wetter world. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12081-12085.	7.1	155
16	Source influence on emission pathways and ambient PM _{2.5} pollution over India (2015–2050). Atmospheric Chemistry and Physics, 2018, 18, 8017-8039.	4.9	148
17	Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States. Environmental Science & Technology, 2017, 51, 5650-5657.	10.0	131
18	Biogenic versus anthropogenic sources of CO in the United States. Geophysical Research Letters, 2008, 35, .	4.0	128

#	Article	IF	CITATIONS
19	Temperature dependence of volatile organic compound evaporative emissions from motor vehicles. Journal of Geophysical Research, 2006, 111, .	3.3	107
20	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	4.9	94
21	Chemical speciation of organic aerosol during the International Consortium for Atmospheric Research on Transport and Transformation 2004: Results from in situ measurements. Journal of Geophysical Research, 2007, 112, .	3.3	92
22	The role of the ocean in the global atmospheric budget of acetone. Geophysical Research Letters, 2012, 39, .	4.0	90
23	Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions. Journal of Geophysical Research, 2004, 109, .	3.3	86
24	Impact of Asian emissions on observations at Trinidad Head, California, during ITCT 2K2. Journal of Geophysical Research, 2004, 109, .	3.3	83
25	An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NO _x and VOC Control as Mitigation Strategies. Geophysical Research Letters, 2019, 46, 4971-4979.	4.0	80
26	Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM _{2.5} Pollution Events and N ₂ O ₅ Observations in Utah's Salt Lake Valley. Environmental Science & Technology, 2017, 51, 5941-5950.	10.0	78
27	Aerosol Optical Depth Over India. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3688-3703.	3.3	73
28	Sources of carbon monoxide and formaldehyde in North America determined from high-resolution atmospheric data. Atmospheric Chemistry and Physics, 2008, 8, 7673-7696.	4.9	72
29	Reconciling the differences between topâ€down and bottomâ€up estimates of nitrous oxide emissions for the U.S. Corn Belt. Global Biogeochemical Cycles, 2013, 27, 746-754.	4.9	71
30	North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations. Journal of Geophysical Research, 2009, 114, .	3.3	60
31	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.	4.9	57
32	Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds. Scientific Data, 2020, 7, 148.	5.3	57
33	Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. Journal of Geophysical Research, 2004, 109, .	3.3	56
34	Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. Journal of Geophysical Research, 2011, 116, .	3.3	56
35	Sources and seasonality of atmospheric methanol based on tall tower measurements in the US Upper Midwest. Atmospheric Chemistry and Physics, 2011, 11, 11145-11156.	4.9	56
36	Observational constraints on the global atmospheric budget of ethanol. Atmospheric Chemistry and Physics, 2010, 10, 5361-5370.	4.9	54

#	Article	IF	CITATIONS
37	Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature, 2020, 585, 225-233.	27.8	53
38	Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons. Atmospheric Chemistry and Physics, 2010, 10, 8761-8781.	4.9	50
39	Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2006, 111, .	3.3	48
40	lsoprene emissions and impacts over an ecological transition region in the U.S. Upper Midwest inferred from tall tower measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3553-3571.	3.3	48
41	Halocarbon Emissions from the United States and Mexico and Their Global Warming Potential. Environmental Science & Technology, 2009, 43, 1055-1060.	10.0	46
42	Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences. Atmospheric Measurement Techniques, 2015, 8, 1303-1321.	3.1	45
43	Emissions of C ₆ –C ₈ aromatic compounds in the United States: Constraints from tall tower and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 826-842.	3.3	44
44	Sensitivity of Ozone Production to NO _{<i>x</i>} and VOC Along the Lake Michigan Coastline. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10989-11006.	3.3	43
45	Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2007, 112, .	3.3	42
46	Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use. Environmental Science & Technology, 2012, 46, 8484-8492.	10.0	42
47	Direct retrieval of isoprene from satellite-based infrared measurements. Nature Communications, 2019, 10, 3811.	12.8	42
48	Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurementâ€nodel comparisons. Journal of Geophysical Research, 2008, 113, .	3.3	41
49	Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. Atmospheric Chemistry and Physics, 2012, 12, 5897-5912.	4.9	39
50	A Large Underestimate of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements. Environmental Science & Technology, 2016, 50, 5631-5640.	10.0	39
51	Bidirectional Ecosystem–Atmosphere Fluxes of Volatile Organic Compounds Across the Mass Spectrum: How Many Matter?. ACS Earth and Space Chemistry, 2018, 2, 764-777.	2.7	39
52	Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere. Nature Communications, 2018, 9, 2584.	12.8	38
53	Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN) and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES). Atmosphere, 2011, 2, 633-654.	2.3	37
54	Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, and carbon monoxide over the Canadian oil sands: validation and model evaluation. Atmospheric Measurement Techniques, 2015, 8, 5189-5211.	3.1	37

#	Article	IF	CITATIONS
55	Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. Atmospheric Chemistry and Physics, 2014, 14, 2555-2570.	4.9	36
56	High upward fluxes of formic acid from a boreal forest canopy. Geophysical Research Letters, 2016, 43, 9342-9351.	4.0	36
57	Oxidation of Volatile Organic Compounds as the Major Source of Formic Acid in a Mixed Forest Canopy. Geophysical Research Letters, 2019, 46, 2940-2948.	4.0	36
58	Constraining remote oxidation capacity with ATom observations. Atmospheric Chemistry and Physics, 2020, 20, 7753-7781.	4.9	36
59	HCOOH measurements from space: TES retrieval algorithm and observed global distribution. Atmospheric Measurement Techniques, 2014, 7, 2297-2311.	3.1	34
60	Partitioning N ₂ O emissions within the U.S. Corn Belt using an inverse modeling approach. Global Biogeochemical Cycles, 2016, 30, 1192-1205.	4.9	32
61	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	4.9	32
62	PM2.5 chemistry, organosulfates, and secondary organic aerosol during the 2017 Lake Michigan Ozone Study. Atmospheric Environment, 2021, 244, 117939.	4.1	31
63	The Global Budget of Atmospheric Methanol: New Constraints on Secondary, Oceanic, and Terrestrial Sources. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033439.	3.3	31
64	Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002. Journal of Geophysical Research, 2004, 109, .	3.3	30
65	North American acetone sources determined from tall tower measurements and inverse modeling. Atmospheric Chemistry and Physics, 2013, 13, 3379-3392.	4.9	29
66	Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability. Atmospheric Chemistry and Physics, 2012, 12, 8189-8203.	4.9	28
67	Nighttime Chemistry and Morning Isoprene Can Drive Urban Ozone Downwind of a Major Deciduous Forest. Environmental Science & Technology, 2016, 50, 4335-4342.	10.0	28
68	Constraints on Carbon Monoxide Emissions Based on Tall Tower Measurements in the U.S. Upper Midwest. Environmental Science & Technology, 2013, 47, 130725095602007.	10.0	22
69	Top-down constraints on global N ₂ O emissions at optimal resolution: application of aÂnew dimension reduction technique. Atmospheric Chemistry and Physics, 2018, 18, 735-756.	4.9	22
70	Climate Sensitivity of Peatland Methane Emissions Mediated by Seasonal Hydrologic Dynamics. Geophysical Research Letters, 2020, 47, e2020GL088875.	4.0	21
71	Overview of the Lake Michigan Ozone Study 2017. Bulletin of the American Meteorological Society, 2021, 102, E2207-E2225.	3.3	20
72	Evidence of continuing methylchloroform emissions from the United States. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	19

#	Article	IF	CITATIONS
73	Source Partitioning of Methane Emissions and its Seasonality in the U.S. Midwest. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 646-659.	3.0	18
74	Topâ€Ðown Constraints on Anthropogenic CO ₂ Emissions Within an Agriculturalâ€Urban Landscape. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4674-4694.	3.3	18
75	Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Spaceâ€Based Formaldehyde Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10525-10545.	3.3	18
76	An intercomparison of total column-averaged nitrous oxide between ground-based FTIR TCCON and NDACC measurements at seven sites and comparisons with the GEOS-Chem model. Atmospheric Measurement Techniques, 2019, 12, 1393-1408.	3.1	17
77	An emission module for ICON-ART 2.0: implementation and simulations of acetone. Geoscientific Model Development, 2017, 10, 2471-2494.	3.6	16
78	Error characterization of methane fluxes and budgets derived from a long-term comparison of open- and closed-path eddy covariance systems. Agricultural and Forest Meteorology, 2019, 278, 107638.	4.8	16
79	Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem versionÂ9-02. Geoscientific Model Development, 2019, 12, 111-130.	3.6	16
80	Simulation of atmospheric N ₂ O with GEOS-Chem and its adjoint: evaluation of observational constraints. Geoscientific Model Development, 2015, 8, 3179-3198.	3.6	15
81	Aircraft-based inversions quantify the importance of wetlands and livestock for Upper Midwest methane emissions. Atmospheric Chemistry and Physics, 2021, 21, 951-971.	4.9	14
82	Rapid conversion of isoprene photooxidation products in terrestrial plants. Communications Earth & Environment, 2020, 1, 44.	6.8	13
83	Surface Wetness as an Unexpected Control on Forest Exchange of Volatile Organic Acids. Geophysical Research Letters, 2020, 47, e2020GL088745.	4.0	13
84	HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.	2.7	13
85	Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra. Biogeosciences, 2020, 17, 6219-6236.	3.3	12
86	Characterization of ground-based atmospheric pollution and meteorology sampling stations during the Lake Michigan Ozone Study 2017. Journal of the Air and Waste Management Association, 2021, 71, 866-889.	1.9	11
87	How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35). Geoscientific Model Development, 2021, 14, 7775-7793.	3.6	11
88	Nextâ€Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	11
89	Tall Tower Ammonia Observations and Emission Estimates in the U.S. Midwest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3432-3447.	3.0	10
90	Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACTâ€America and GEM. Geophysical Research Letters, 2021, 48, e2021GL093361.	4.0	8

#	Article	IF	CITATIONS
91	Modeling the Sources and Transport Processes During Extreme Ammonia Episodes in the U.S. Corn Belt. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031207.	3.3	7
92	Topâ€Down Constraints on Methane Point Source Emissions From Animal Agriculture and Waste Based on New Airborne Measurements in the U.S. Upper Midwest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005429.	3.0	7
93	Magnitude and Uncertainty of Nitrous Oxide Emissions From North America Based on Bottomâ€Up and Topâ€Down Approaches: Informing Future Research and National Inventories. Geophysical Research Letters, 2021, 48, e2021GL095264.	4.0	7
94	Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components. Earth System Dynamics, 2020, 11, 415-434.	7.1	5
95	Investigation of Isoprene Dynamics During the Dayâ€ŧoâ€Night Transition Period. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032784.	3.3	4
96	A Multiyear Constraint on Ammonia Emissions and Deposition Within the US Corn Belt. Geophysical Research Letters, 2021, 48, e2020GL090865.	4.0	4
97	FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site. Geoscientific Model Development, 2021, 14, 6309-6329.	3.6	4
98	Response to Comment on "Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Useâ€: Environmental Science & Technology, 2013, 47, 2141-2141.	10.0	3
99	Biases in open-path carbon dioxide flux measurements: Roles of instrument surface heat exchange and analyzer temperature sensitivity. Agricultural and Forest Meteorology, 2021, 296, 108216.	4.8	3
100	Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest. Atmospheric Chemistry and Physics, 2021, 21, 17031-17050.	4.9	0
101	Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment, Remote Sensing, 2022, 14, 1810	4.0	0