Iva MatolÃ-novÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/865344/publications.pdf

Version: 2024-02-01

145 papers 4,238 citations

34 h-index 138484 58 g-index

147 all docs

147 docs citations

147 times ranked

4827 citing authors

#	Article	IF	CITATIONS
1	Effect of the sintering temperature on microstructure and optical properties of reactive sintered YAG:Sm3+ ceramics. Optical Materials: X, 2022, 13, 100131.	0.8	1
2	Adatom and Nanoparticle Dynamics on Single-Atom Catalyst Substrates. ACS Catalysis, 2022, 12, 4859-4871.	11.2	19
3	Sputtered Ir–Ru based catalysts for oxygen evolution reaction: Study of iridium effect on stability. International Journal of Hydrogen Energy, 2022, 47, 21033-21043.	7.1	14
4	On the interpretation of X-ray photoelectron spectra of Pt-Cu bimetallic alloys. Journal of Electron Spectroscopy and Related Phenomena, 2021, 246, 147027.	1.7	29
5	Investigation of dextran adsorption on polycrystalline cerium oxide surfaces. Applied Surface Science, 2021, 544, 148890.	6.1	9
6	Magnetron Sputtered Iridium-Ruthenium Thin-Film Catalyst for Oxygen Evolution Reaction. ECS Meeting Abstracts, 2021, MA2021-01, 1214-1214.	0.0	1
7	A Facile Way for Acquisition of a Nanoporous Pt–C Catalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 2021, 8, 2100122.	3.7	3
8	Growth Inhibition of Gram-Positive and Gram-Negative Bacteria by Zinc Oxide Hedgehog Particles. International Journal of Nanomedicine, 2021, Volume 16, 3541-3554.	6.7	20
9	Comparison of Antibacterial Mode of Action of Silver Ions and Silver Nanoformulations With Different Physico-Chemical Properties: Experimental and Computational Studies. Frontiers in Microbiology, 2021, 12, 659614.	3.5	28
10	Study of Photoregeneration of Zinc Phthalocyanine Chemiresistor after Exposure to Nitrogen Dioxide. Chemosensors, 2021, 9, 237.	3.6	4
11	Interplay Among Dealloying, Ostwald Ripening, and Coalescence in Pt <i>>_X</i> Ni _{100–⟨i>XConditions. ACS Catalysis, 2021, 11, 11360-11370.}	11.2	15
12	Effect of MgO doping on the structure and optical properties of YAG transparent ceramics. Journal of the European Ceramic Society, 2020, 40, 861-866.	5.7	29
13	Unraveling the Surface Chemistry and Structure in Highly Active Sputtered Pt ₃ Y Catalyst Films for the Oxygen Reduction Reaction. ACS Applied Materials & Distribution Reaction Reaction. ACS Applied Materials & Distribution Reaction Reaction Reaction. ACS Applied Materials & Distribution Reaction Re	8.0	16
14	Irreversible structural dynamics on the surface of bimetallic PtNi alloy catalyst under alternating oxidizing and reducing environments. Applied Catalysis B: Environmental, 2020, 264, 118476.	20.2	26
15	New Insights towards High-Temperature Ethanol-Sensing Mechanism of ZnO-Based Chemiresistors. Sensors, 2020, 20, 5602.	3.8	13
16	Colloidal stability and catalytic activity of cerium oxide nanoparticles in cell culture media. RSC Advances, 2020, 10, 39373-39384.	3.6	18
17	Surface Composition of a Highly Active Pt ₃ Y Alloy Catalyst for Application in Low Temperature Fuel Cells. Fuel Cells, 2020, 20, 413-419.	2.4	6
18	In situ Nearâ€Ambient Pressure Xâ€ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite. ChemSusChem, 2020, 13, 5722-5730.	6.8	15

#	Article	IF	Citations
19	Evolution of the PtNi Bimetallic Alloy Fuel Cell Catalyst under Simulated Operational Conditions. ACS Applied Materials & Interfaces, 2020, 12, 17602-17610.	8.0	22
20	Role of nitrogenated carbon in tuning Pt-CeOx based anode catalysts for higher performance of hydrogen-powered fuel cells. Applied Surface Science, 2020, 515, 146054.	6.1	6
21	Sputter-etching treatment of proton-exchange membranes: Completely dry thin-film approach to low-loading catalyst-coated membranes for water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 20776-20786.	7.1	14
22	Compositionally tuned magnetron co-sputtered PtxNi100-x alloy as a cathode catalyst for proton exchange membrane fuel cells. Applied Surface Science, 2020, 511, 145486.	6.1	12
23	Fiber-like Structure on the Proton Exchange Membrane Created By Simultaneous Magnetron Sputtering and Plasma Etching in Role of a Catalyst Support in Water Electrolyzers. ECS Meeting Abstracts, 2020, MA2020-01, 1586-1586.	0.0	0
24	Effect of Acidâ€"Base Characteristics of In2O3-Al2O3 (ZrO2) Compositions on Their Catalytic Properties in the Oxidative Dehydrogenation of Propane to Propylene with CO2. Theoretical and Experimental Chemistry, 2019, 55, 207-214.	0.8	10
25	Highly developed nanostructuring of polymer-electrolyte membrane supported catalysts for hydrogen fuel cell application. Journal of Power Sources, 2019, 439, 227084.	7.8	9
26	Al 2 O 3 â€Atomic Layer Deposited Films on CH 3 NH 3 Pbl 3 : Intrinsic Defects and Passivation Mechanisms. Energy Technology, 2019, 7, 1900975.	3.8	8
27	Properties of Nitrogen/Silicon Doped Vertically Oriented Graphene Produced by ICP CVD Roll-to-Roll Technology. Coatings, 2019, 9, 60.	2.6	7
28	Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells. International Journal of Hydrogen Energy, 2019, 44, 16087-16098.	7.1	31
29	Ultimate dispersion of metallic and ionic platinum on ceria. Journal of Materials Chemistry A, 2019, 7, 13019-13028.	10.3	21
30	New Insight into the Gas-Sensing Properties of CuO _{<i>x</i>} Nanowires by Near-Ambient Pressure XPS. Journal of Physical Chemistry C, 2019, 123, 29739-29749.	3.1	28
31	lr/TiC/Pt Vs. Pt-Ir/TiC in Role of Magnetron Sputtered Thin-Film Catalyst for Anode of PEM Reversible Fuel Cell. ECS Meeting Abstracts, 2019, , .	0.0	0
32	Bulk Hydroxylation and Effective Water Splitting by Highly Reduced Cerium Oxide: The Role of O Vacancy Coordination. ACS Catalysis, 2018, 8, 4354-4363.	11.2	52
33	In situ electrochemical AFM monitoring of the potential-dependent deterioration of platinum catalyst during potentiodynamic cycling. Ultramicroscopy, 2018, 187, 64-70.	1.9	25
34	Thin Film Catalysts for Proton Exchange Membrane Fuel Cells. , 2018, , 351-359.		0
35	Pt–CeO2 Catalysts for Fuel Cell Applications: From Surface Science to Electrochemistry. , 2018, , 189-201.		2
36	Nanoscale Morphological and Structural Transformations of PtCu Alloy Electrocatalysts during Potentiodynamic Cycling. Journal of Physical Chemistry C, 2018, 122, 21974-21982.	3.1	11

#	Article	IF	Citations
37	Inhibition of E. coli Growth by Nanodiamond and Graphene Oxide Enhanced by Luria-Bertani Medium. Nanomaterials, 2018, 8, 140.	4.1	35
38	Investigation of gas sensing mechanism of SnO2 based chemiresistor using near ambient pressure XPS. Surface Science, 2018, 677, 284-290.	1.9	51
39	Roomâ€Temperature Atomicâ€Layerâ€Deposited Al ₂ O ₃ Improves the Efficiency of Perovskite Solar Cells over Time. ChemSusChem, 2018, 11, 3640-3648.	6.8	33
40	Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles. Catalysis Science and Technology, 2017, 7, 4315-4345.	4.1	84
41	Thermally Controlled Bonding of Adenine to Cerium Oxide: Effect of Substrate Stoichiometry, Morphology, Composition, and Molecular Deposition Technique. Journal of Physical Chemistry C, 2017, 121, 25118-25131.	3.1	7
42	PLD prepared nanostructured Pt-CeO2 thin films containing ionic platinum. Applied Surface Science, 2017, 396, 278-283.	6.1	14
43	Electrochemically shape-controlled transformation of magnetron sputtered platinum films into platinum nanostructures enclosed by high-index facets. Surface and Coatings Technology, 2017, 309, 6-11.	4.8	5
44	Micro-contacted self-assembled tungsten oxide nanorods for hydrogen gas sensing. International Journal of Hydrogen Energy, 2017, 42, 1344-1352.	7.1	16
45	Candle Soot as Efficient Support for Proton Exchange Membrane Fuel Cell Catalyst. Fuel Cells, 2016, 16, 652-655.	2.4	16
46	High efficiency of Pt2+- CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2016, 197, 262-270.	20.2	52
47	Observation of surface reduction in porous ceria thin film grown on graphite foil substrate. Materials Today: Proceedings, 2016, 3, 2772-2779.	1.8	5
48	Creating single-atom Pt-ceria catalysts by surface step decoration. Nature Communications, 2016, 7, 10801.	12.8	388
49	In-situ electrochemical atomic force microscopy study of aging of magnetron sputtered Pt-Co nanoalloy thin films during accelerated degradation test. Electrochimica Acta, 2016, 211, 52-58.	5.2	23
50	CeOx(111)/Cu(111) Thin Films as Model Catalyst Supports. Springer Series in Materials Science, 2016, , 233-250.	0.6	0
51	Surface composition of magnetron sputtered Pt-Co thin film catalyst for proton exchange membrane fuel cells. Applied Surface Science, 2016, 365, 245-251.	6.1	33
52	Heteroepitaxy of Cerium Oxide Thin Films on Cu(111). Materials, 2015, 8, 6346-6359.	2.9	9
53	Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil. Nanoscale, 2015, 7, 4038-4047.	5.6	21
54	Altering properties of cerium oxide thin films by Rh doping. Materials Research Bulletin, 2015, 67, 5-13.	5.2	20

#	Article	IF	Citations
55	High low-temperature CO oxidation activity of platinum oxide prepared by magnetron sputtering. Applied Surface Science, 2015, 345, 319-328.	6.1	18
56	Revealing chemical ordering in Pt–Co nanoparticles using electronic structure calculations and X-ray photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 28298-28310.	2.8	24
57	Structural and Chemical Characterization of Cerium Oxide Thin Layers Grown on Silicon Substrate. Materials Today: Proceedings, 2015, 2, 101-107.	1.8	5
58	Pt–CeO thin film catalysts for PEMFC. Catalysis Today, 2015, 240, 236-241.	4.4	52
59	Proton exchange membrane fuel cell made of magnetron sputtered Pt–CeO and Pt–Co thin film catalysts. Journal of Power Sources, 2015, 273, 105-109.	7.8	47
60	Electronic structure and bonding of small Pd clusters on stoichiometric and reduced SnO2(110) surfaces. Vacuum, 2014, 106, 86-93.	3.5	13
61	Preparation of Magnetron Sputtered Thin Cerium Oxide Films with a Large Surface on Silicon Substrates Using Carbonaceous Interlayers. ACS Applied Materials & Interfaces, 2014, 6, 1213-1218.	8.0	27
62	Comment on "Ordered Phases of Reduced Ceria as Epitaxial Films on Cu(111)― Journal of Physical Chemistry C, 2014, 118, 5058-5059.	3.1	20
63	Ordered Phases of Reduced Ceria As Epitaxial Films on Cu(111). Journal of Physical Chemistry C, 2014, 118, 357-365.	3.1	83
64	HAXPES study of CeO thin film–silicon oxide interface. Applied Surface Science, 2014, 303, 46-53.	6.1	15
65	Maximum Nobleâ€Metal Efficiency in Catalytic Materials: Atomically Dispersed Surface Platinum. Angewandte Chemie - International Edition, 2014, 53, 10525-10530.	13.8	384
66	Investigation of Growth Mechanism of Thin Sputtered Cerium Oxide Films on Carbon Substrates. Science of Advanced Materials, 2014, 6, 1278-1285.	0.7	11
67	Epitaxial Cubic Ce ₂ O ₃ Films via Ce–CeO ₂ Interfacial Reaction. Journal of Physical Chemistry Letters, 2013, 4, 866-871.	4.6	99
68	Deposition of Pt and Sn doped CeOx layers on silicon substrate. Surface and Coatings Technology, 2013, 227, 15-18.	4.8	7
69	Copper-ceria interaction: A combined photoemission and DFT study. Applied Surface Science, 2013, 267, 12-16.	6.1	37
70	Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 268-277.	1.7	11
71	Growth of nano-porous Pt-doped cerium oxide thin films on glassy carbon substrate. Ceramics International, 2013, 39, 3765-3769.	4.8	15
72	Nanostructured Pt–CeO2 thin film catalyst grown on graphite foil by magnetron sputtering. Applied Surface Science, 2013, 267, 119-123.	6.1	20

#	Article	IF	CITATIONS
73	X-ray small-angle scattering from sputtered CeO2/C bilayers. Journal of Applied Physics, 2013, 113, 024301.	2.5	0
74	E-beam lithography processing of Au-nanowire contacts for development of gas sensors based on tungsten-oxide nanorods self-assembled on mica. International Journal of Nanotechnology, 2012, 9, 825.	0.2	3
75	Synchrotron radiation photoelectron spectroscopy study of metal-oxide thin film catalysts: Pt–CeO2 coated CNTs. Applied Surface Science, 2012, 258, 2161-2164.	6.1	14
76	Water interaction with $CeO2(1\ 1\ 1)/Cu(1\ 1\ 1)$ model catalyst surface. Catalysis Today, 2012, 181, 124-132.	4.4	85
77	Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source. Thin Solid Films, 2012, 520, 4155-4162.	1.8	57
78	Ultrasharp tungsten tipsâ€"characterization and nondestructive cleaning. Ultramicroscopy, 2012, 113, 152-157.	1.9	28
79	Adjusting Morphology and Surface Reduction of CeO2(111) Thin Films on Cu(111). Journal of Physical Chemistry C, 2011, 115, 7496-7503.	3.1	82
80	Pt–CeO ₂ Coating of Carbon Nanotubes Grown on Anode Gas Diffusion Layer of the Polymer Electrolyte Membrane Fuel Cell. Journal of Nanoscience and Nanotechnology, 2011, 11, 5062-5067.	0.9	24
81	Growth of <scp>Al₂O₃</scp> Nanowires on the <scp>Cu</scp> â€9Âat.%Al(111) Single Crystal Surface. Journal of the American Ceramic Society, 2011, 94, 4084-4088.	3 . 8	6
82	Morphology of Titanium Nanocluster Films Prepared by Gas Aggregation Cluster Source. Plasma Processes and Polymers, 2011, 8, 640-650.	3.0	41
83	CO and methanol adsorption on (2 \tilde{A} — 1)Pt(110) and ionâ \in eroded Pt(111) model catalysts. Surface and Interface Analysis, 2011, 43, 1325-1331.	1.8	21
84	Activity of oxygen reduction reaction on small amount of amorphous CeO promoted Pt cathode for fuel cell application. Electrochimica Acta, 2011, 56, 3874-3883.	5.2	75
85	Deposition of nanostructured fluorocarbon plasma polymer films by RF magnetron sputtering of polytetrafluoroethylene. Thin Solid Films, 2011, 519, 6426-6431.	1.8	38
86	Methanol Adsorption and Decomposition on Pt/CeO $<$ sub $>$ 2 $<$ /sub $>$ (111)/Cu(111) Thin Film Model Catalyst. Langmuir, 2010, 26, 13333-13341.	3.5	34
87	Pt and Sn Doped Sputtered CeO ₂ Electrodes for Fuel Cell Applications. Fuel Cells, 2010, 10, 139-144.	2.4	14
88	Superâ€Hydrophobic Coatings Prepared by RF Magnetron Sputtering of PTFE. Plasma Processes and Polymers, 2010, 7, 544-551.	3.0	86
89	Pt ^{2 + , 4+} ions in CeO ₂ rfâ€sputtered thin films. Surface and Interface Analysis, 2010, 42, 882-885.	1.8	25
90	Platinum-Doped CeO ₂ Thin Film Catalysts Prepared by Magnetron Sputtering. Langmuir, 2010, 26, 12824-12831.	3. 5	84

#	Article	IF	Citations
91	Interaction of oxygen with Au/Ti(0001) surface alloys studied by photoelectron spectroscopy. Journal of Physics Condensed Matter, 2010, 22, 265002.	1.8	3
92	$Au < sup > + and \ Au < sup > 3 + ions \ in \ CeO < sub > 2 rf-sputtered \ thin \ films. \ Journal \ Physics \ D: \ Applied \ Physics, 2009, 42, 115301.$	2.8	32
93	A study of tungsten oxide nanowires self-organized on mica support. Nanotechnology, 2009, 20, 445604.	2.6	19
94	A photoemission study of the ceria and Au-doped ceria/Cu(111) interfaces. Vacuum, 2009, 84, 8-12.	3.5	10
95	Interaction of Au with CeO2(111): A photoemission study. Journal of Chemical Physics, 2009, 130, 034703.	3.0	60
96	A resonant photoemission applied to cerium oxide based nanocrystals. Nanotechnology, 2009, 20, 215706.	2.6	58
97	Anode Material for Hydrogen Polymer Membrane Fuel Cell: Pt–CeO[sub 2] RF-Sputtered Thin Films. Journal of the Electrochemical Society, 2009, 156, B938.	2.9	34
98	A resonant photoelectron spectroscopy study of Sn(O _{<i>x</i>}) doped CeO ₂ catalysts. Surface and Interface Analysis, 2008, 40, 225-230.	1.8	74
99	Photoemission Spectroscopy Study of Cu/CeO ₂ Systems:  Cu/CeO ₂ Nanosized Catalyst and CeO ₂ (111)/Cu(111) Inverse Model Catalyst. Journal of Physical Chemistry C, 2008, 112, 3751-3758.	3.1	40
100	Photoelectron spectroscopy and secondary ion mass spectrometry characterization of diamond-like carbon films. Thin Solid Films, 2007, 515, 5386-5390.	1.8	5
101	Growth of ultra-thin cerium oxide layers on Cu(1 1 1). Applied Surface Science, 2007, 254, 153-155.	6.1	64
102	Photoelectron-spectroscopic and reactivity investigation of thin Pd–Sn films prepared by magnetron sputtering. Applied Surface Science, 2007, 253, 5400-5403.	6.1	3
103	Comparing Catalytic Properties of Copper Loaded CeO2 and SnO2 Oxides Catalysts for CO oxidation. Transactions of the Materials Research Society of Japan, 2007, 32, 1023-1026.	0.2	0
104	Structure and electronic properties of gold adsorbed on Ti(0001). Applied Surface Science, 2006, 252, 5428-5431.	6.1	7
105	Fabrication and Microanalysis of Nano-Structured CuO _X -CeO ₂ Catalysts for CO Oxidation Reaction. Advanced Materials Research, 2006, 15-17, 261-266.	0.3	0
106	Photoemission study of COadsorption on ordered Pbâ • Ni (111) surface phases. Physical Review B, 2006, 74, .	3.2	12
107	Study of palladium interaction with magnetron sputtered SnO2 films. E-Journal of Surface Science and Nanotechnology, 2006, 4, 497-503.	0.4	3
108	Activation of binary Zr–V non-evaporable getters: synchrotron radiation photoemission study. Applied Surface Science, 2005, 243, 106-112.	6.1	15

#	Article	IF	Citations
109	XPS, TDS and static SIMS studies of binary Pd/Al system properties: correlation between Pd–Al bimetallic interaction and CO adsorption. Applied Surface Science, 2005, 245, 87-93.	6.1	13
110	Sims study of Tiâ€"Zrâ€"V NEG thermal activation process. Vacuum, 2005, 80, 47-52.	3.5	7
111	Redox process of Pd–SnO2 system. Surface Science, 2004, 566-568, 1217-1221.	1.9	23
112	Residual surface oxide on ZrV getterâ€"XPS, LEIS and SIMS study. Vacuum, 2004, 74, 305-309.	3.5	23
113	CO interaction with Ni3Al alloy: XPS, LEIS and TPD study. Surface Science, 2004, 566-568, 1093-1096.	1.9	7
114	XPS and SSIMS studies of Pd/SnOx system: reduction and oxidation in hydrogen containing air. Surface Science, 2004, 566-568, 1118-1123.	1.9	35
115	Study of Pd–Al interactions on Pd/AlOx/Al systems during CO adsorption and desorption cycles: XPS and LEIS. Surface Science, 2004, 566-568, 1035-1039.	1.9	1
116	XPS and SIMS study of the ageing mechanism of Zr–V non-evaporable getter films. Applied Surface Science, 2004, 235, 202-206.	6.1	24
117	Influence of Pd–Co bimetallic interaction on CO adsorption properties of PdxCo1â^'x alloys: XPS, TPD and static SIMS studies. Vacuum, 2003, 71, 41-45.	3.5	14
118	Study of Pd–In interaction during Pd deposition on pyrolytically prepared In2O3. Applied Surface Science, 2003, 205, 196-205.	6.1	38
119	XPS, ISS and TDS study of bimetallic interaction between Pd and Al: CO interaction with supported Pd/alumina catalysts. Surface Science, 2002, 507-510, 803-807.	1.9	9
120	Role of Pd–Al bimetallic interaction in CO adsorption and catalytic properties of bulk PdAl alloy: XPS, ISS, TDS, and SIMS study. Surface Science, 2002, 507-510, 92-98.	1.9	23
121	XPS and TPD study of CO interaction with Pd–Al and Pd–Al2O3 systems. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 327-332.	1.7	9
122	EELS investigation of Pd thin film growth on aluminum oxide substrate. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 575-580.	1.7	7
123	XPS, ISS and TPD study of Pd–Sn interactions on Pd–SnOx systems. Thin Solid Films, 2001, 391, 204-208.	1.8	51
124	TPD and XPS study of the CO adsorption on transition-SP metal systems: Pd and Al. Vacuum, 2001, 63, 15-22.	3.5	17
125	XPS and TDS study of CO interaction with Pd–AlOx systems. Progress in Surface Science, 2001, 67, 167-181.	8.3	34
126	CO adsorption on Al2O3-supported Pd clusters: XPS study. Applied Surface Science, 2000, 162-163, 679-684.	6.1	15

#	Article	IF	Citations
127	CO adsorption on palladium model catalysts: XPS Pd–Al2O3 interaction study. Surface Science, 2000, 467, 169-176.	1.9	45
128	QUANTITATIVE ANALYSIS OF NONCONTINUOUS THIN FILMS BY EELS. Surface Review and Letters, 1999, 06, 801-804.	1.1	4
129	AES and EELS study of aluminium oxide thin films. Thin Solid Films, 1998, 317, 77-80.	1.8	7
130	EELS investigation of Pd thin film growth on Nb substrate. Vacuum, 1998, 50, 89-91.	3.5	5
131	Model of lateral forces and compensation effect in TDS spectra analysis. Vacuum, 1998, 50, 227-231.	3.5	4
132	CO diffusion over the alumina support of Pd particle model catalysts. Surface Science, 1998, 398, 117-124.	1.9	20
133	Influence of Alumina Surface Structure on Growth and Adsorption Properties of Pd Particles. Surface Review and Letters, 1998, 05, 397-401.	1.1	6
134	SSIMS and XPS Studies of Reconstruction of Alumina-Supported Rh Particles. Surface Review and Letters, 1998, 05, 375-379.	1.1	3
135	INFLUENCE OF SURFACE STRUCTURE ON THE MECHANISM OF CO ADSORPTION AND CATALYTIC OXIDATION ON PALLADIUM. Surface Review and Letters, 1997, 04, 1353-1358.	1.1	14
136	Study of CO interaction with alumina-supported Pd particles. Surface Science, 1997, 377-379, 644-649.	1.9	20
137	Molecular beam study of CO and O2 sticking coefficients on Rh model catalysts. Surface Science, 1997, 377-379, 813-818.	1.9	16
138	AES and EELS study of alumina model catalyst supports. Applied Surface Science, 1997, 115, 46-52.	6.1	26
139	Size effect study of carbon monoxide oxidation by Rh surfaces. Surface Science, 1996, 352-354, 305-309.	1.9	37
140	Influence of substrate structure on activity of alumina supported Pd particles: CO adsorption and oxidation. Surface Science, 1996, 365, 69-77.	1.9	40
141	Study of CO desorption and dissociation on Rh surfaces. Surface Science, 1995, 331-333, 105-109.	1.9	45
142	The influence of particle size on CO oxidation on Pd/alumina model catalyst. Surface Science, 1995, 331-333, 173-177.	1.9	65
143	The influence of particle size on CO adsorption on Pd/alumina model catalysts. Surface Science, 1994, 313, 99-106.	1.9	105
144	Study of desorption activation energy on Rh-CO systems. European Physical Journal D, 1993, 43, 957-961.	0.4	5

#	Article	IF	CITATIONS
145	Molecular beam study of CO chemisorption on alumina-supported Pd particles. European Physical Journal D, 1993, 43, 1023-1027.	0.4	6