
Martina Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8652995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological Inhibition of Epac1 Averts Ferroptosis Cell Death by Preserving Mitochondrial Integrity. Antioxidants, 2022, 11, 314.	5.1	13
2	A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Science Advances, 2022, 8, eabj9949.	10.3	20
3	Epithelial 3D-spheroids as a tool to study air pollutant-induced lung pathology. SLAS Discovery, 2022, 27, 185-190.	2.7	5
4	Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Environmental Pollution, 2022, 305, 119292.	7.5	8
5	Diesel exhaust particles alter cAMP dynamics in human bronchial epithelial cells. FASEB Journal, 2022, 36, .	0.5	0
6	Elevated cAMP Protects against Diclofenac-Induced Toxicity in Primary Rat Hepatocytes: A Protective Effect Mediated by the Exchange Protein Directly Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Factors. Molecular Pharmacology, 2021, 99, 294-307.	2.3	6
7	Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction. Cells, 2021, 10, 1237.	4.1	4
8	Metformin protects against diclofenac-induced toxicity in primary rat hepatocytes by preserving mitochondrial integrity via a pathway involving EPAC. Biomedicine and Pharmacotherapy, 2021, 143, 112072.	5.6	5
9	Glucosamine protects against neuronal but not vascular damage in experimental diabetic retinopathy. Molecular Metabolism, 2021, 54, 101333.	6.5	7
10	Cigarette smoke exposure alters phosphodiesterases in human structural lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L59-L64.	2.9	12
11	SK channel activation potentiates auranofin-induced cell death in glio- and neuroblastoma cells. Biochemical Pharmacology, 2020, 171, 113714.	4.4	16
12	Involvement of NDPK-B in Glucose Metabolism-Mediated Endothelial Damage via Activation of the Hexosamine Biosynthesis Pathway and Suppression of O-GlcNAcase Activity. Cells, 2020, 9, 2324.	4.1	8
13	Dimethyl Fumarate Attenuates Lung Inflammation and Oxidative Stress Induced by Chronic Exposure to Diesel Exhaust Particles in Mice. International Journal of Molecular Sciences, 2020, 21, 9658.	4.1	15
14	Role of the Ang2–Tie2 Axis in Vascular Damage Driven by High Glucose or Nucleoside Diphosphate Kinase B Deficiency. International Journal of Molecular Sciences, 2020, 21, 3713.	4.1	5
15	Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases. Current Opinion in Pharmacology, 2020, 51, 34-42.	3.5	16
16	A-Kinase Anchoring Proteins Diminish TGF-β1/Cigarette Smoke-Induced Epithelial-To-Mesenchymal Transition. Cells, 2020, 9, 356.	4.1	16
17	SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans. Cell Death and Disease, 2020, 11, 263.	6.3	34
18	Disruption of AKAP-PKA Interaction Induces Hypercontractility With Concomitant Increase in Proliferation Markers in Human Airway Smooth Muscle. Frontiers in Cell and Developmental Biology, 2020, 8, 165.	3.7	2

#	Article	IF	CITATIONS
19	Nanodomains in cardiopulmonary disorders and the impact of air pollution. Biochemical Society Transactions, 2020, 48, 799-811.	3.4	11
20	LSC - 2020 - Diesel Exhaust Particles-induced Dysfunctional Responses in Lung Epithelial Progenitors is mediated by oxidative stress. , 2020, , .		0
21	LSC - 2020 - Diesel exhaust particles alter mitochondrial bioenergetics in human bronchial epithelial cells. , 2020, , .		0
22	PGE2 and PGI2 restore defective lung epithelial progenitors induced by cigarette smoke. , 2020, , .		0
23	Revealing the Virulence Potential of Clinical and Environmental Aspergillus fumigatus Isolates Using Whole-Genome Sequencing. Frontiers in Microbiology, 2019, 10, 1970.	3.5	24
24	Function of cAMP scaffolds in obstructive lung disease: Focus on epithelialâ€ŧoâ€mesenchymal transition and oxidative stress. British Journal of Pharmacology, 2019, 176, 2402-2415.	5.4	18
25	cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology—tribute to Karl H. Jakobs. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 887-911.	3.0	5
26	Second M 3 muscarinic receptor binding site contributes to bronchoprotection by tiotropium. British Journal of Pharmacology, 2019, 176, 2864-2876.	5.4	7
27	Phosphodiesterases as therapeutic targets for respiratory diseases. , 2019, 197, 225-242.		81
28	Metabolic escape to glycolysis through SK channel activation inhibits ferroptosis and increases the life span of C. elegans in conditions of heat stress. FASEB Journal, 2019, 33, 665.7.	0.5	0
29	A-kinase anchoring proteins diminish lung EMT induced by TGF-ß1/cigarette smoke. , 2019, , .		0
30	Cigarette smoke and diesel particles repress functional responses in lung epithelial progenitors. , 2019, , .		0
31	cAMP: From Long-Range Second Messenger to Nanodomain Signalling. Trends in Pharmacological Sciences, 2018, 39, 209-222.	8.7	95
32	Cigarette smoke upâ€regulates <scp>PDE3</scp> and <scp>PDE4</scp> to decrease <scp>cAMP</scp> in airway cells. British Journal of Pharmacology, 2018, 175, 2988-3006.	5.4	31
33	PDE8: A Novel Target in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 426-427.	2.9	6
34	Paving the Rho in cancer metastasis: Rho GTPases and beyond. , 2018, 183, 1-21.		132
35	Targeting FRET-Based Reporters for cAMP and PKA Activity Using AKAP79. Sensors, 2018, 18, 2164.	3.8	13
36	SK channel activation is neuroprotective in conditions of enhanced ER–mitochondrial coupling. Cell Death and Disease, 2018, 9, 593.	6.3	8

#	Article	IF	CITATIONS
37	Epac Function and cAMP Scaffolds in the Heart and Lung. Journal of Cardiovascular Development and Disease, 2018, 5, 9.	1.6	29
38	Cigarette Smoke Upregulates PDE3 and PDE4 to Decrease cAMP in Airway Cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR20-4.	0.0	0
39	Airway epithelial-to-mesenchymal transition: Compartmentalized cyclic AMP. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-5-24.	0.0	0
40	Cyclic AMP compartments drive airway epithelial-to-mesenchymal transition (EMT). , 2018, , .		0
41	Microtubuleâ€regulating proteins and cAMPâ€dependent signaling in neuroblastoma differentiation. Cytoskeleton, 2017, 74, 143-158.	2.0	10
42	The PDE4 inhibitor CHF-6001 and LAMAs inhibit bronchoconstriction-induced remodeling in lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L507-L515.	2.9	15
43	The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy. Acta Diabetologica, 2017, 54, 581-591.	2.5	13
44	Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2. Bioorganic and Medicinal Chemistry, 2017, 25, 5557-5568.	3.0	25
45	Cover Image, Volume 74, Issue 3. Cytoskeleton, 2017, 74, C4-C4.	2.0	Ο
46	Endothelial follistatinâ€likeâ€1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling. Pulmonary Circulation, 2017, 7, 219-231.	1.7	13
47	Upregulation of Epac-1 in Hepatic Stellate Cells by Prostaglandin E ₂ in Liver Fibrosis Is Associated with Reduced Fibrogenesis. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 126-135.	2.5	17
48	Catecholamines facilitate VEGF-dependent angiogenesis via β2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget, 2017, 8, 44732-44748.	1.8	27
49	Secondary allosteric M3 receptor binding for tiotropium: implications for bronchoprotection and functional interactions with LABAs. , 2017, , .		Ο
50	Propolis reverts cigarette smoke-induced emphysema through macrophage alternative activation. , 2017, , .		0
51	The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease. Scientific Reports, 2016, 6, 26928.	3.3	12
52	Epac1 links prostaglandin E2 to β-catenin-dependent transcription during epithelial-to-mesenchymal transition. Oncotarget, 2016, 7, 46354-46370.	1.8	21
53	Epac1 and Epac2 regulate airway smooth muscle tone in mice. , 2016, , .		0
54	Monitoring local pulmonary cAMP levels: Combining precision cut lung slice (PCLS) and fluorescence resonance energy transfer (FRET) technologies in mice. , 2016, , .		0

#	Article	IF	CITATIONS
55	The novel compound Sul-121 inhibits inflammation in experimental models of chronic obstructive pulmonary disease. , 2016, , .		0
56	RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response. PLoS ONE, 2015, 10, e0133553.	2.5	8
57	A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L766-L775.	2.9	23
58	Prostaglandin E ₂ promotes <i><scp>MYCN</scp></i> nonâ€amplified neuroblastoma cell survival <i>via</i> βâ€catenin stabilization. Journal of Cellular and Molecular Medicine, 2015, 19, 210-226.	3.6	19
59	Scaffolding during the cell cycle by A-kinase anchoring proteins. Pflugers Archiv European Journal of Physiology, 2015, 467, 2401-2411.	2.8	22
60	Exchange Protein Directly Activated by cAMP (EPAC) Regulates Neuronal Polarization through Rap1B. Journal of Neuroscience, 2015, 35, 11315-11329.	3.6	28
61	β3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BKCa channels and Rho kinase. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 749-759.	3.0	18
62	Eucalyptol reduced inflammation and oxidative stress on mouse lungs exposed to long and short-term cigarette smoke. , 2015, , .		0
63	Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke. FASEB Journal, 2014, 28, 4617-4628.	0.5	24
64	Rat β3-adrenoceptor protein expression: antibody validation and distribution in rat gastrointestinal and urogenital tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 1117-1127.	3.0	17
65	Activin-A: active in inflammation in COPD. European Respiratory Journal, 2014, 43, 954-955.	6.7	7
66	<scp>A</scp> â€kinase anchoring proteins: <scp>cAMP</scp> compartmentalization in neurodegenerative and obstructive pulmonary diseases. British Journal of Pharmacology, 2014, 171, 5603-5623.	5.4	27
67	A-kinase anchoring proteins contribute to loss of E-cadherin and bronchial epithelial barrier by cigarette smoke. American Journal of Physiology - Cell Physiology, 2014, 306, C585-C597.	4.6	47
68	Interaction between Epac1 and miRNA-7 in airway smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 795-797.	3.0	12
69	The pharmacological rationale for combining muscarinic receptor antagonists and β-adrenoceptor agonists in the treatment of airway and bladder disease. Current Opinion in Pharmacology, 2014, 16, 31-42.	3.5	45
70	TGF-β-Activated Kinase 1 (TAK1) Signaling Regulates TGF-β-Induced WNT-5A Expression in Airway Smooth Muscle Cells via Sp1 and β-Catenin. PLoS ONE, 2014, 9, e94801.	2.5	36
71	Exchange Protein Directly Activated by cAMP (epac): A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions. Pharmacological Reviews, 2013, 65, 670-709.	16.0	230
72	Noncanonical WNTâ€5A signaling regulates TGFâ€Î²â€induced extracellular matrix production by airway smooth muscle cells. FASEB Journal, 2013, 27, 1631-1643.	0.5	96

#	Article	IF	CITATIONS
73	Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1922-1929.	3.8	25
74	Distinct PKA and Epac compartmentalization in airway function and plasticity. , 2013, 137, 248-265.		45
75	Follistatinâ€like 1 enhances cigarette smokeâ€induced interleukinâ€8 secretion from human airway smooth muscle cells FASEB Journal, 2013, 27, 1107.10.	0.5	0
76	Aâ€kinase anchoring proteins (AKAPs) regulate airway smooth muscle secretory function. FASEB Journal, 2013, 27, 882.5.	0.5	0
77	Epac2 and PLC Îμ contribute to the inflammatory response to cigarette smoke in vivo. FASEB Journal, 2013, 27, 1107.7.	0.5	0
78	Neuroblastoma cell proliferation involves prostaglandin E2 and subsequent β atenin stabilization. FASEB Journal, 2013, 27, 1096.16.	0.5	0
79	Function and molecular regulation of WNTâ€5A expression by TGFâ€Î². FASEB Journal, 2013, 27, 729.6.	0.5	0
80	Role for Aâ€kinase anchoring proteins in cigarette smokeâ€induced barrier dysfunction. FASEB Journal, 2013, 27, 1107.6.	0.5	0
81	Multiple Facets of cAMP Signalling and Physiological Impact: cAMP Compartmentalization in the Lung. Pharmaceuticals, 2012, 5, 1291-1331.	3.8	32
82	The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster. Journal of Experimental Biology, 2012, 215, 2912-2919.	1.7	48
83	Disruption of the Phospholipase D Gene Attenuates the Virulence of Aspergillus fumigatus. Infection and Immunity, 2012, 80, 429-440.	2.2	43
84	Induction of VMAT-1 and TPH-1 Expression Induces Vesicular Accumulation of Serotonin and Protects Cells and Tissue from Cooling/Rewarming Injury. PLoS ONE, 2012, 7, e30400.	2.5	2
85	Anti-Inflammatory Role of the cAMP Effectors Epac and PKA: Implications in Chronic Obstructive Pulmonary Disease. PLoS ONE, 2012, 7, e31574.	2.5	66
86	Histone Acetyltransferases As Epigenetic Regulators Of Airway Inflammation And Steroid Resistance In Asthma. , 2011, , .		0
87	InlBâ€mediated <i>Listeria monocytogenes</i> internalization requires a balanced phospholipase D activity maintained through phosphoâ€cofilin. Molecular Microbiology, 2011, 81, 860-880.	2.5	19
88	cAMP inhibits modulation of airway smooth muscle phenotype via the exchange protein activated by cAMP (Epac) and protein kinase A. British Journal of Pharmacology, 2011, 162, 193-209.	5.4	33
89	Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. British Journal of Pharmacology, 2011, 164, 958-969.	5.4	25
90	Epac as a novel effector of airway smooth muscle relaxation. Journal of Cellular and Molecular Medicine, 2011, 15, 1551-1563.	3.6	63

#	Article	IF	CITATIONS
91	How Can 1 + 1 = 3? β2-Adrenergic and Glucocorticoid Receptor Agonist Synergism in Obstructive Airway Diseases: Fig. 1 Molecular Pharmacology, 2011, 80, 955-958.	2.3	8
92	Inhibition of Rho-Kinase Abrogates Migration of Human Transitional Cell Carcinoma Cells: Results of an in vitro Study. Urologia Internationalis, 2011, 86, 220-227.	1.3	5
93	Reversible remodeling of lung tissue during hibernation in the Syrian hamster. Journal of Experimental Biology, 2011, 214, 1276-1282.	1.7	49
94	Glycogen synthase kinase-3 regulates cigarette smoke extract- and IL-1β-induced cytokine secretion by airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L910-L919.	2.9	19
95	β-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells. PLoS ONE, 2011, 6, e21468.	2.5	67
96	Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway. PLoS ONE, 2011, 6, e22568.	2.5	55
97	Exchange protein activated by cyclic AMP 2 (Epac2) plays a specific and timeâ€limited role in memory retrieval. Hippocampus, 2010, 20, 1018-1026.	1.9	39
98	The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. British Journal of Pharmacology, 2010, 159, 265-284.	5.4	125
99	Epac And PKA Inhibit Cigarette Smoke-Induced Production Of Interleukin-8 In Airway Smooth Muscle Cells. , 2010, , .		0
100	8-pCPT-conjugated cyclic AMP analogs exert thromboxane receptor antagonistic properties. Thrombosis and Haemostasis, 2010, 103, 662-676.	3.4	13
101	<i>De novo</i> synthesis of ßâ€catenin <i>via</i> Hâ€Ras and MEK regulates airway smooth muscle growth. FASEB Journal, 2010, 24, 757-768.	0.5	40
102	8â€pCPTâ€Conjugated Cyclic AMP Analogs exert Thromboxane Receptor Antagonistic Properties. FASEB Journal, 2010, 24, 575.4.	0.5	0
103	Epac as a novel relaxant factor in airway smooth muscle. FASEB Journal, 2010, 24, .	0.5	0
104	Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein– and Fibroblast Growth Factor–Signaling Pathways. Circulation Research, 2009, 105, 431-441.	4.5	107
105	B cell receptor-induced growth arrest and apoptosis in WEHI-231 immature B lymphoma cells involve cyclic AMP and Epac proteins. Cellular Signalling, 2009, 21, 609-621.	3.6	25
106	(Endo)cannabinoids mediate different Ca2+ entry mechanisms in human bronchial epithelial cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 380, 67-77.	3.0	8
107	Epac inhibits migration and proliferation of human prostate carcinoma cells. British Journal of Cancer, 2009, 101, 2038-2042.	6.4	51
108	PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells. Respiratory Research, 2009, 10, 88.	3.6	33

Martina Schmidt

#	Article	IF	CITATIONS
109	Epac: effectors and biological functions. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 377, 345-357.	3.0	118
110	The GSK-3/β-catenin-signalling axis in smooth muscle and its relationship with remodelling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 185-191.	3.0	29
111	Monomeric G-proteins as signal transducers in airway physiology and pathophysiology. Cellular Signalling, 2008, 20, 1705-1714.	3.6	28
112	Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cellular Signalling, 2008, 20, 1715-1724.	3.6	76
113	Pharmacology of airway smooth muscle proliferation. European Journal of Pharmacology, 2008, 585, 385-397.	3.5	42
114	GSK-3/β-catenin signaling axis in airway smooth muscle: role in mitogenic signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1110-L1118.	2.9	39
115	Role of Transforming Growth Factor Î ² in Rat Bladder Smooth Muscle Cell Proliferation. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 117-122.	2.5	12
116	Dynamic phospholipid signaling by G protein-coupled receptors. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 888-900.	2.6	87
117	Epac and the cardiovascular system. Current Opinion in Pharmacology, 2007, 7, 193-200.	3.5	54
118	Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO Journal, 2007, 26, 4189-4202.	7.8	91
119	Virodhamine and CP55,940 modulate cAMP production and IL-8 release in human bronchial epithelial cells. British Journal of Pharmacology, 2007, 151, 1041-1048.	5.4	23
120	Regulator of G-protein signalling 3 redirects prototypical Gi-coupled receptors from Rac1 to RhoA activation. Cellular Signalling, 2007, 19, 1229-1237.	3.6	26
121	Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn-Schmiedeberg's Archives of Pharmacology, 2007, 374, 399-411.	3.0	99
122	Rho kinase: a target for treating urinary bladder dysfunction?. Trends in Pharmacological Sciences, 2006, 27, 492-497.	8.7	90
123	Cyclic AMP-dependent and Epac-mediated Activation of R-Ras by G Protein-coupled Receptors Leads to Phospholipase D Stimulation. Journal of Biological Chemistry, 2006, 281, 21837-21847.	3.4	68
124	The Guanine Nucleotide Exchange Factor p63RhoGEF, a Specific Link between Gq/11-coupled Receptor Signaling and RhoA. Journal of Biological Chemistry, 2005, 280, 11134-11139.	3.4	175
125	Epac- and Ca2+-controlled Activation of Ras and Extracellular Signal-regulated Kinases by Gs-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 46497-46508.	3.4	94
126	Activation of Type I Phosphatidylinositol 4-Phosphate 5-Kinase Isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42. Journal of Biological Chemistry, 2004, 279, 7840-7849.	3.4	153

#	Article	IF	CITATIONS
127	Rap2B-Dependent Stimulation of Phospholipase C-ε by Epidermal Growth Factor Receptor Mediated by c-Src Phosphorylation of RasGRP3. Molecular and Cellular Biology, 2004, 24, 4664-4676.	2.3	42
128	Regulation and cellular roles of phosphoinositide 5-kinases. European Journal of Pharmacology, 2004, 500, 87-99.	3.5	120
129	Inhibition of phospholipase C-ε by Gi-coupled receptors. Cellular Signalling, 2004, 16, 921-928.	3.6	16
130	p63RhoGEF and GEFT are Rho-specific guanine nucleotide exchange factors encoded by the same gene. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 369, 540-546.	3.0	46
131	Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochemical and Biophysical Research Communications, 2003, 302, 127-132.	2.1	31
132	Mammalian phospholipase C. Advances in Molecular and Cell Biology, 2003, 33, 431-450.	0.1	5
133	Stimulation of Phospholipase C-ε by the M3Muscarinic Acetylcholine Receptor Mediated by Cyclic AMP and the GTPase Rap2B. Journal of Biological Chemistry, 2002, 277, 16805-16813.	3.4	69
134	Interaction of the Rho-ADP-ribosylating C3 Exoenzyme with RalA. Journal of Biological Chemistry, 2002, 277, 14771-14776.	3.4	27
135	Distinct Signaling Pathways Mediate Cardiomyocyte Phospholipase D Stimulation by Endothelin-1 and Thrombin. Journal of Molecular and Cellular Cardiology, 2002, 34, 441-453.	1.9	24
136	Signalling components involved in the coupling of $\hat{l}\pm 1$ -adrenoceptors to phospholipase D in neonatal rat cardiac myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 468-476.	3.0	11
137	A new phospholipase-C–calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nature Cell Biology, 2001, 3, 1020-1024.	10.3	303
138	The M3 Muscarinic Acetylcholine Receptor Expressed in HEK-293 Cells Signals to Phospholipase D via G12 but Not Gq-type G Proteins. Journal of Biological Chemistry, 2001, 276, 2474-2479.	3.4	77
139	Control of cellular phosphatidylinositol 4,5-bisphosphate levels by adhesion signals and Rho GTPases in NIH 3T3 fibroblasts. FEBS Journal, 2000, 267, 5237-5246.	0.2	24
140	Stimulation of Phosphatidylinositol-4-phosphate 5-Kinase by Rho-Kinase. Journal of Biological Chemistry, 2000, 275, 10168-10174.	3.4	98
141	G Protein-coupled Receptor-induced Sensitization of Phospholipase C Stimulation by Receptor Tyrosine Kinases. Journal of Biological Chemistry, 2000, 275, 32603-32610.	3.4	28
142	Phospholipase D Stimulation by Receptor Tyrosine Kinases Mediated by Protein Kinase C and a Ras/Ral Signaling Cascade. Journal of Biological Chemistry, 1999, 274, 34691-34698.	3.4	60
143	A Role for Rho-kinase in Rho-controlled Phospholipase D Stimulation by the m3 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 1999, 274, 14648-14654.	3.4	79
144	The ADP-ribosylation Factor (ARF)-related GTPase ARF-related Protein Binds to the ARF-specific Guanine Nucleotide Exchange Factor Cytohesin and Inhibits the ARF-dependent Activation of Phospholipase D. Journal of Biological Chemistry, 1999, 274, 9744-9751.	3.4	41

#	Article	IF	CITATIONS
145	Role of sphingosine kinase in Ca2+signalling by epidermal growth factor receptor. FEBS Letters, 1999, 461, 217-222.	2.8	64
146	Specific Inhibition of Phorbol Ester-stimulated Phospholipase D by Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B-1470 in HEK-293 Cells. Journal of Biological Chemistry, 1998, 273, 7413-7422.	3.4	58
147	Tyrosine-phosphorylation-dependent and Rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels. Biochemical Journal, 1998, 334, 625-631.	3.7	28
148	Muscarinic receptor-stimulated cytosol-membrane translocation of RhoA. FEBS Letters, 1997, 403, 299-302.	2.8	32
149	Regulation of phospholipase C and D activities by small molecular weight G proteins and muscarinic receptors. Life Sciences, 1997, 60, 1093-1100.	4.3	16
150	Characteristics of Protein-Kinase-C- and ADP-Ribosylation-Factor-Stimulated Phospholipase D Activities in Human Embryonic Kidney Cells. FEBS Journal, 1997, 248, 407-414.	0.2	25
151	Identification of G protein-coupled receptors potently stimulating migration of human transitional-cell carcinoma cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 769-776.	3.0	35
152	Receptor Regulation of Phospholipases C and D. , 1997, , 197-209.		0
153	Chapter 20 Participation of small GTP-binding proteins in m3 muscarinic acetylcholine receptor signalling to phospholipase D and C. Progress in Brain Research, 1996, 109, 209-216.	1.4	3
154	Restoration of Clostridium Difficile Toxin-B-Inhibited Phospholipase D by Phosphatidylinositol 4,5-Bisphosphate. FEBS Journal, 1996, 240, 707-712.	0.2	38
155	A role for Rho in receptor- and G protein-stimulated phospholipase C Reduction in phosphatidylinositol 4,5-bisphosphate by Clostridium difficile toxin B. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 87-94.	3.0	41
156	Inhibition of Receptor Signaling to Phospholipase D by Clostridium difficile Toxin B. Journal of Biological Chemistry, 1996, 271, 2422-2426.	3.4	93
157	Evidence for ADP-Ribosylation-Factor-Mediated Activation of Phospholipase D by m3 Muscarinic Acetylcholine Receptor. FEBS Journal, 1995, 234, 240-244.	0.2	88
158	Differential calcium signalling by m2 and m3 muscarinic acetylcholine receptors in a single cell type. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 352, 469-476.	3.0	32
159	Analysis of receptor-G protein interactions in permeabilized cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 351, 329-336.	3.0	34
160	Rapid and Persistent Desensitization of m3 Muscarinic Acetylcholine Receptor-stimulated Phospholipase D. Journal of Biological Chemistry, 1995, 270, 19949-19956.	3.4	38
161	Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. FEBS Journal, 1994, 225, 667-675.	0.2	84