Katia Barbera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8651895/publications.pdf Version: 2024-02-01

KATIA RADREDA

#	Article	IF	CITATIONS
1	Etherification of HMF to biodiesel additives: The role of NH4+ confinement in Beta zeolites. Journal of Energy Chemistry, 2019, 36, 114-121.	12.9	13
2	Comparison of H + and NH 4 + forms of zeolites as acid catalysts for HMF etherification. Catalysis Today, 2018, 304, 97-102.	4.4	36
3	Synthesis, Characterization, and Activity Pattern of Ni–Al Hydrotalcite Catalysts in CO ₂ Methanation. Industrial & Engineering Chemistry Research, 2016, 55, 8299-8308.	3.7	133
4	On the nature of the active sites in the selective oxidative esterification of furfural on Au/ZrO 2 catalysts. Catalysis Today, 2016, 278, 56-65.	4.4	31
5	Role of size and pretreatment of Pd particles on their behaviour in the direct synthesis of H2O2. Journal of Energy Chemistry, 2016, 25, 297-305.	12.9	13
6	Disruptive catalysis by zeolites. Catalysis Science and Technology, 2016, 6, 2485-2501.	4.1	68
7	HMF etherification using NH ₄ -exchanged zeolites. New Journal of Chemistry, 2016, 40, 4300-4306.	2.8	18
8	Onionâ€Like Graphene Carbon Nanospheres as Stable Catalysts for Carbon Monoxide and Methane Chlorination. ChemCatChem, 2015, 7, 3036-3046.	3.7	19
9	The role of oxide location in HMF etherification with ethanol over sulfated ZrO2 supported on SBA-15. Journal of Catalysis, 2015, 323, 19-32.	6.2	59
10	The role of acid sites induced by defects in the etherification of HMF on Silicalite-1 catalysts. Journal of Catalysis, 2015, 330, 558-568.	6.2	72
11	Low-temperature graphitization of amorphous carbon nanospheres. Chinese Journal of Catalysis, 2014, 35, 869-876.	14.0	43
12	Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. Journal of Catalysis, 2013, 307, 62-73.	6.2	169
13	Carbon growth evidences as a result of benzene pyrolysis. Carbon, 2013, 59, 296-307.	10.3	30
14	Operando Raman spectroscopy applying novel fluidized bed micro-reactor technology. Catalysis Today, 2013, 205, 128-133.	4.4	45
15	Role of internal coke for deactivation of ZSM-5 catalysts after low temperature removal of coke with NO2. Catalysis Science and Technology, 2012, 2, 1196.	4.1	30
16	Role of Phosphate Species and Speciation Kinetics in Detergency Solutions. Industrial & Engineering Chemistry Research, 2012, 51, 4173-4180.	3.7	8
17	By-product co-feeding reveals insights into the role of zinc on methanol synthesis catalysts. Catalysis Communications, 2012, 21, 63-67.	3.3	15
18	Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Physical Chemistry Chemical Physics, 2011, 13, 2539-2549.	2.8	137

Katia Barbera

#	Article	IF	CITATIONS
19	Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. Journal of Catalysis, 2011, 280, 196-205.	6.2	265
20	How defects and crystal morphology control the effects of desilication. Catalysis Today, 2011, 168, 38-47.	4.4	103
21	Basic evidences for methanol-synthesis catalyst design. Catalysis Today, 2009, 143, 80-85.	4.4	119
22	Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A: General, 2008, 350, 16-23.	4.3	367
23	Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 2007, 249, 185-194.	6.2	468