List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8651468/publications.pdf Version: 2024-02-01

		22153	22832
209	13,861	59	112
papers	citations	h-index	g-index
217	217	217	16359
all docs	docs citations	times ranked	citing authors

IFROMF ROSE

#	Article	IF	CITATIONS
1	Potential of Ligand-Promoted Dissolution at Mild pH for the Selective Recovery of Rare Earth Elements in Bauxite Residues. ACS Sustainable Chemistry and Engineering, 2022, 10, 6942-6951.	6.7	9
2	MESOCOSM: A mesocosm database management system for environmental nanosafety. NanoImpact, 2021, 21, 100288.	4.5	8
3	In Vitro Co-Exposure to CeO2 Nanomaterials from Diesel Engine Exhaust and Benzo(a)Pyrene Induces Additive DNA Damage in Sperm and Cumulus Cells but Not in Oocytes. Nanomaterials, 2021, 11, 478.	4.1	5
4	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. Nano Today, 2021, 37, 101065.	11.9	7
5	Robustness of Indoor Aquatic Mesocosm Experimentations and Data Reusability to Assess the Environmental Risks of Nanomaterials. Frontiers in Environmental Science, 2021, 9, .	3.3	4
6	X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. Environmental Pollution, 2021, 279, 116897.	7.5	13
7	The SERENADE project – A step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach. Nano Today, 2021, 39, 101238.	11.9	1
8	In situ determination of engineered nanomaterial aggregation state in a cosmetic emulsion – toward safer-by-design products. Environmental Science: Nano, 2021, 8, 3546-3559.	4.3	3
9	Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials. Environmental Science & amp; Technology, 2021, 55, 16270-16282.	10.0	10
10	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
11	The necessity of investigating a freshwater-marine continuum using a mesocosm approach in nanosafety: The case study of TiO2 MNM-based photocatalytic cement. NanoImpact, 2020, 20, 100254.	4.5	5
12	Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 2020, 20, 100267.	4.5	22
13	CeO2 Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro. Nanomaterials, 2020, 10, 2327.	4.1	6
14	Ontology-based NLP information extraction to enrich nanomaterial environmental exposure database. Procedia Computer Science, 2020, 176, 360-369.	2.0	10
15	The shape and speciation of Ag nanoparticles drive their impacts on organisms in a lotic ecosystem. Environmental Science: Nano, 2020, 7, 3167-3177.	4.3	9
16	Anthropogenic Release and Distribution of Titanium Dioxide Particles in a River Downstream of a Nanomaterial Manufacturer Industrial Site. Frontiers in Environmental Science, 2020, 8, .	3.3	23
17	Multivariate analysis of the exposure and hazard of ceria nanomaterials in indoor aquatic mesocosms. Environmental Science: Nano, 2020, 7, 1661-1669.	4.3	4
18	Oxidative transformation of Tungsten (W) nanoparticles potentially released in aqueous and biological media in case of Tokamak (nuclear fusion) Lost of Vacuum Accident (LOVA). Comptes Rendus - Geoscience, 2020, 352, 539-558.	1.2	4

#	Article	IF	CITATIONS
19	Colonisation of finfish substrate inhabited by black soldier fly larvae by blow flies, bacteria, and fungi. Journal of Insects As Food and Feed, 2020, 6, 291-304.	3.9	9
20	Monitoring the Environmental Aging of Nanomaterials: An Opportunity for Mesocosm Testing?. Materials, 2019, 12, 2447.	2.9	10
21	In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. Nanomaterials, 2019, 9, 1233.	4.1	11
22	Mechanisms limiting the release of TiO ₂ nanomaterials during photocatalytic cement alteration: the role of surface charge and porous network morphology. Environmental Science: Nano, 2019, 6, 624-634.	4.3	3
23	Calcium coordination environment in precursor species to calcium carbonate mineral formation. Geochimica Et Cosmochimica Acta, 2019, 259, 344-357.	3.9	12
24	Design of model tokamak particles for future toxicity studies: Morphology and physical characterization. Fusion Engineering and Design, 2019, 145, 60-65.	1.9	6
25	Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. Geochimica Et Cosmochimica Acta, 2019, 260, 15-28.	3.9	51
26	Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. NanoImpact, 2019, 13, 66-69.	4.5	26
27	Elaboration of Cellulose Nanocrystal/Ge-Imogolite Nanotube Multilayered Thin Films. Langmuir, 2018, 34, 3386-3394.	3.5	13
28	The effect of surface modification of microfibrillated cellulose (MFC) by acid chlorides on the structural and thermomechanical properties of biopolyamide 4.10 nanocomposites. Industrial Crops and Products, 2018, 116, 97-108.	5.2	20
29	Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. Geochimica Et Cosmochimica Acta, 2018, 229, 53-64.	3.9	15
30	Very low concentration of cerium dioxide nanoparticles induce DNA damage, but no loss of vitality, in human spermatozoa. Toxicology in Vitro, 2018, 50, 236-241.	2.4	32
31	Transformations of Nanoenabled Copper Formulations Govern Release, Antifungal Effectiveness, and Sustainability throughout the Wood Protection Lifecycle. Environmental Science & Technology, 2018, 52, 1128-1138.	10.0	34
32	Respiratory hazard of Li-ion battery components: elective toxicity of lithium cobalt oxide (LiCoO2) particles in a mouse bioassay. Archives of Toxicology, 2018, 92, 1673-1684.	4.2	21
33	Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice. Scientific Reports, 2018, 8, 4408.	3.3	17
34	Environmental exposure of a simulated pond ecosystem to a CuO nanoparticle-based wood stain throughout its life cycle. Environmental Science: Nano, 2018, 5, 2579-2589.	4.3	19
35	Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. Environmental Science & Technology, 2018, 52, 12987-12996.	10.0	28
36	Non-linear release dynamics for a CeO2 nanomaterial embedded in a protective wood stain, due to matrix photo-degradation. Environmental Pollution, 2018, 241, 182-193.	7.5	19

#	Article	IF	CITATIONS
37	SERENADE: safer and ecodesign research and education applied to nanomaterial development, the new generation of materials safer by design. Environmental Science: Nano, 2017, 4, 526-538.	4.3	21
38	Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances. Environmental Science and Pollution Research, 2017, 24, 9269-9277.	5.3	22
39	Alignment of Ge-imogolite nanotubes in isomalt with tunable inter-tube distances. RSC Advances, 2017, 7, 21323-21327.	3.6	6
40	Pulmonary exposure to metallic nanomaterials during pregnancy irreversibly impairs lung development of the offspring. Nanotoxicology, 2017, 11, 484-495.	3.0	40
41	Nanoscale Coloristic Pigments: Upper Limits on Releases from Pigmented Plastic during Environmental Aging, In Food Contact, and by Leaching. Environmental Science & Technology, 2017, 51, 11669-11680.	10.0	35
42	3D Characterization of Silicon Based Electrode Material for Advanced Lithium-Ion Storage Technologies. Microscopy and Microanalysis, 2017, 23, 2026-2027.	0.4	1
43	Highâ€Energy Resolution Fluorescence Detected Xâ€Ray Absorption Spectroscopy: A Powerful New Structural Tool in Environmental Biogeochemistry Sciences. Journal of Environmental Quality, 2017, 46, 1146-1157.	2.0	72
44	Structural and physical–chemical behavior of a CeO ₂ nanoparticle based diesel additive during combustion and environmental release. Environmental Science: Nano, 2017, 4, 1974-1980.	4.3	16
45	Regulatory relevant and reliable methods and data for determining the environmental fate of manufactured nanomaterials. NanoImpact, 2017, 8, 1-10.	4.5	64
46	Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of <i>Arabidopsis thaliana</i> by X-ray Computed Nanotomography and Hyperspectral Imaging. Environmental Science & Technology, 2017, 51, 8682-8691.	10.0	152
47	Environmental exposure to TiO2 nanomaterials incorporated in building material. Environmental Pollution, 2017, 220, 1160-1170.	7.5	44
48	3D Microanalysis of Porous Copper Using FIB-Tomography in Combination with X-ray Computed Tomography. Microscopy and Microanalysis, 2017, 23, 254-255.	0.4	2
49	Accelerated microwave assisted synthesis of alumino-germanate imogolite nanotubes. RSC Advances, 2016, 6, 108146-108150.	3.6	9
50	Aggregation and sedimentation of magnetite nanoparticle clusters. Environmental Science: Nano, 2016, 3, 567-577.	4.3	81
51	Remote Biodegradation of Ge–Imogolite Nanotubes Controlled by the Iron Homeostasis of <i>Pseudomonas brassicacearum</i> . Environmental Science & Technology, 2016, 50, 7791-7798.	10.0	8
52	Influence of structural defects of Ge-imogolite nanotubes on their toxicity towards Pseudomonas brassicacearum. Environmental Science: Nano, 2016, 3, 839-846.	4.3	7
53	Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. Environmental Science & Technology, 2016, 50, 6892-6901.	10.0	30
54	Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier. Environmental Science & Technology, 2016, 50, 7610-7617.	10.0	63

JEROME ROSE

#	Article	IF	CITATIONS
55	Arsenate uptake by Al nanoclusters and other Al-based sorbents during water treatment. Water Research, 2016, 88, 844-851.	11.3	35
56	Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environmental Science & Technology, 2016, 50, 2747-2753.	10.0	55
57	Size fractionation of elements and nanoparticles in natural water by both dead-end and tangential flow filtration. Desalination and Water Treatment, 2016, 57, 8194-8203.	1.0	0
58	Isotopically exchangeable Al in coastal lowland acid sulfate soils. Science of the Total Environment, 2016, 542, 129-135.	8.0	1
59	Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations. Environmental Science and Pollution Research, 2016, 23, 5960-5968.	5.3	26
60	Physicochemical Properties of Nanoparticles in Relation with Toxicity. , 2016, , 3183-3195.		0
61	Ecotoxicity of Inorganic Nanoparticles: From Unicellular Organisms to Invertebrates. , 2016, , 901-916.		0
62	Application of membrane processes in fractionation of elements in river water. Water Science and Technology, 2015, 72, 2277-2290.	2.5	1
63	Surface Properties (Physical and Chemical) andÂRelated Reactions. Frontiers of Nanoscience, 2015, 8, 217-243.	0.6	2
64	Cerium dioxide nanoparticles affectin vitrofertilization in mice. Nanotoxicology, 2015, 10, 1-7.	3.0	48
65	Are Interactions between Organic Compounds and Nanoscale Weathering Minerals the Key Drivers of Carbon Storage in Soils?. Environmental Science & Technology, 2015, 49, 3997-3998.	10.0	49
66	Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus - Geoscience, 2015, 347, 35-42.	1.2	21
67	Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO ₂ nanoparticles. Environmental Science: Nano, 2015, 2, 653-663.	4.3	42
68	DNA damage and oxidative stress induced by CeO ₂ nanoparticles in human dermal fibroblasts: Evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology, 2015, 9, 696-705.	3.0	59
69	Synergistic effects of sulfate reducing bacteria and zero valent iron on zinc removal and stability in aquifer sediment. Chemical Engineering Journal, 2015, 260, 83-89.	12.7	67
70	Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste. Cement and Concrete Research, 2015, 67, 138-147.	11.0	204
71	Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats. Particle and Fibre Toxicology, 2014, 11, 67.	6.2	25
72	Molecular Insights of Oxidation Process of Iron Nanoparticles: Spectroscopic, Magnetic, and Microscopic Evidence. Environmental Science & amp; Technology, 2014, 48, 13888-13894.	10.0	97

#	Article	IF	CITATIONS
73	Long-term aging of a CeO2 based nanocomposite used for wood protection. Environmental Pollution, 2014, 188, 1-7.	7.5	59
74	Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles. Water Research, 2014, 51, 64-72.	11.3	96
75	Structural incorporation of iron into Ge–imogolite nanotubes: a promising step for innovative nanomaterials. RSC Advances, 2014, 4, 49827-49830.	3.6	36
76	Aged TiO ₂ -Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and Sensitizes <i>Escherichia coli</i> to Cadmium. Environmental Science & Technology, 2014, 48, 5245-5253.	10.0	40
77	Transfer, Transformation, and Impacts of Ceria Nanomaterials in Aquatic Mesocosms Simulating a Pond Ecosystem. Environmental Science & Technology, 2014, 48, 9004-9013.	10.0	85
78	Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (<i>Fundulus) Tj ETQq0 0 0</i>	rgBT/Ove	rlock 10 Tf 5
79	Toxicity evaluation of manufactured CeO2 nanoparticles before and after alteration: combined physicochemical and whole-genome expression analysis in Caco-2 cells. BMC Genomics, 2014, 15, 700.	2.8	37
80	An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Scientific Reports, 2014, 4, 5608.	3.3	45
81	Exposure of juvenile Danio rerio to aged TiO2 nanomaterial from sunscreen. Environmental Science and Pollution Research, 2013, 20, 3340-3350.	5.3	38
82	An overview of solid/liquid separation methods and size fractionation techniques for engineered nanomaterials in aquatic environment. Environmental Technology Reviews, 2013, 2, 55-70.	4.3	20
83	Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. Water Research, 2013, 47, 3921-3930.	11.3	36
84	Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes. Chemical Communications, 2013, 49, 11284.	4.1	57
85	Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona?. Nanoscale, 2013, 5, 1658.	5.6	134
86	Sulfur and oxygen isotope tracing in zero valent iron based In situ remediation system for metal contaminants. Chemosphere, 2013, 90, 1366-1371.	8.2	18
87	Preparation of amino-functionalized silica in aqueous conditions. Applied Surface Science, 2013, 266, 155-160.	6.1	42
88	Sorption of Arsenite, Arsenate, and Thioarsenates to Iron Oxides and Iron Sulfides: A Kinetic and Spectroscopic Investigation. Environmental Science & Technology, 2013, 47, 5652-5659.	10.0	175
89	Ultrastructural Interactions and Genotoxicity Assay of Cerium Dioxide Nanoparticles on Mouse Oocytes. International Journal of Molecular Sciences, 2013, 14, 21613-21628.	4.1	56
90	Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment. Environmental Chemistry, 2013, 10, 285.	1.5	45

#	Article	IF	CITATIONS
91	Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species. PLoS ONE, 2013, 8, e71260.	2.5	67
92	High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. Review of Scientific Instruments, 2012, 83, 063104.	1.3	55
93	Effects of metallic and metal oxide nanoparticles in aquatic and terrestrial food chains. Biomarkers responses in invertebrates and bacteria. International Journal of Nanotechnology, 2012, 9, 181.	0.2	10
94	Environmental fate of nanoparticles: physical chemical and biological aspects – a few snapshots. International Journal of Nanotechnology, 2012, 9, 167.	0.2	2
95	Influence of the Length of Imogolite-Like Nanotubes on Their Cytotoxicity and Genotoxicity toward Human Dermal Cells. Chemical Research in Toxicology, 2012, 25, 2513-2522.	3.3	22
96	Physico-chemical Control over the Single- or Double-Wall Structure of Aluminogermanate Imogolite-like Nanotubes. Journal of the American Chemical Society, 2012, 134, 3780-3786.	13.7	69
97	Is There a Trojan-Horse Effect during Magnetic Nanoparticles and Metalloid Cocontamination of Human Dermal Fibroblasts?. Environmental Science & Technology, 2012, 46, 10789-10796.	10.0	13
98	Chemical element imaging for speleothem geochemistry: Application to a uranium-bearing corallite with aragonite diagenesis to opal (Eastern Siberia, Russia). Chemical Geology, 2012, 294-295, 190-202.	3.3	14
99	Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. Geoderma, 2012, 183-184, 100-108.	5.1	83
100	Electrospinning. , 2012, , 769-775.		2
101	Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. Particle and Fibre Toxicology, 2012, 9, 18.	6.2	67
102	Electrostatic RF MEMS Switches. , 2012, , 783-783.		0
103	Location and evolution of the speciation of vanadium in bitumen and model of reclaimed bituminous mixes during ageing: Can vanadium serve as a tracer of the aged and fresh parts of the reclaimed asphalt pavement mixture?. Fuel, 2012, 102, 423-430.	6.4	18
104	Arsenic speciation in cemented paste backfills and synthetic calcium–silicate–hydrates. Minerals Engineering, 2012, 39, 51-61.	4.3	24
105	Adsorption of Arsenic on Polyaluminum Granulate. Environmental Science & Technology, 2012, 46, 7310-7317.	10.0	48
106	Electrowetting-on-Dielectric (EWOD). , 2012, , 789-789.		0
107	Reply to comment on Fisichella et al. (2012), "Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in Caco-2 cells―by Faust et al Particle and Fibre Toxicology, 2012, 9, 39.	6.2	6
108	Life cycle assessment of the application of nanoclays in wire coating. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012014.	0.6	0

JEROME ROSE

#	Article	IF	CITATIONS
109	Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environmental Pollution, 2012, 163, 55-61.	7.5	54
110	Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 2012, 31, 50-59.	4.3	498
111	Ecotoxicity of Inorganic Nanoparticles: From Unicellular Organisms to Invertebrates. , 2012, , 623-636.		2
112	Growth kinetic of single and double-walled aluminogermanate imogolite-like nanotubes: an experimental and modeling approach. Physical Chemistry Chemical Physics, 2011, 13, 2682-2689.	2.8	47
113	Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 14516.	2.8	29
114	More than the lons: The Effects of Silver Nanoparticles on <i>Lolium multiflorum</i> . Environmental Science & Technology, 2011, 45, 2360-2367.	10.0	494
115	Ecotoxicology: Nanoparticle Reactivity and Living Organisms. , 2011, , 325-357.		9
116	Strong chemical evidence for high Fe(II)-colloids and low As-bearing colloids (200nm–10kDa) contents in groundwater and flooded paddy fields in Bangladesh: A size fractionation approach. Applied Geochemistry, 2011, 26, 1665-1672.	3.0	16
117	Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. Comptes Rendus - Geoscience, 2011, 343, 123-139.	1.2	58
118	Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus - Geoscience, 2011, 343, 168-176.	1.2	43
119	Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environment International, 2011, 37, 1105-1110.	10.0	93
120	TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: Structures and quantities. Environmental Pollution, 2011, 159, 1543-1550.	7.5	166
121	Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. Environmental Pollution, 2011, 159, 2698-2705.	7.5	61
122	Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 2011, 159, 2515-2522.	7.5	123
123	Detection of environmental clastogens and aneugens in human fibroblasts by cytokinesis-blocked micronucleus assay associated with immunofluorescent staining of CENP-A in micronuclei. Chemosphere, 2011, 84, 676-680.	8.2	14
124	Filter-Feeding Bivalves Store and Biodeposit Colloidally Stable Gold Nanoparticles. Environmental Science & Technology, 2011, 45, 6592-6599.	10.0	65
125	Kinetics of steel slag leaching: Batch tests and modeling. Waste Management, 2011, 31, 225-235.	7.4	120

#	Article	IF	CITATIONS
127	Temporal variations in arsenic uptake by rice plants in Bangladesh: The role of iron plaque in paddy fields irrigated with groundwater. Science of the Total Environment, 2010, 408, 4185-4193.	8.0	71
128	Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environmental Pollution, 2010, 158, 3482-3489.	7.5	203
129	Combining Size Fractionation, Scanning Electron Microscopy, and Xâ€ray Absorption Spectroscopy to Probe Zinc Speciation in Pig Slurry. Journal of Environmental Quality, 2010, 39, 531-540.	2.0	27
130	Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine, 2010, 5, 999-1007.	3.3	69
131	Structural Degradation at the Surface of a TiO ₂ -Based Nanomaterial Used in Cosmetics. Environmental Science & Technology, 2010, 44, 2689-2694.	10.0	193
132	Formation and Growth Mechanisms of Imogolite-Like Aluminogermanate Nanotubes. Chemistry of Materials, 2010, 22, 2466-2473.	6.7	60
133	Investigation of Copper Speciation in Pig Slurry by a Multitechnique Approach. Environmental Science & Technology, 2010, 44, 6926-6932.	10.0	50
134	Evidence of Double-Walled Alâ^'Ge Imogolite-Like Nanotubes. A Cryo-TEM and SAXS Investigation. Journal of the American Chemical Society, 2010, 132, 1208-1209.	13.7	56
135	Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere, 2010, 78, 445-450.	8.2	99
136	Concurrent Aggregation and Deposition of TiO ₂ Nanoparticles in a Sandy Porous Media. Environmental Science & Technology, 2010, 44, 4897-4902.	10.0	197
137	Comparison of Methods for Fullerene Detection and Measurements of Reactive Oxygen Production in Cosmetic Products. Environmental Engineering Science, 2010, 27, 797-804.	1.6	19
138	Modelling of Pb release during Portland cement alteration. Advances in Cement Research, 2009, 21, 1-10.	1.6	9
139	Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 2009, 4, 634-641.	31.5	1,586
140	Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(II–III) hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332, 26-35.	4.7	20
141	Synthesis of Imogolite Fibers from Decimolar Concentration at Low Temperature and Ambient Pressure: A Promising Route for Inexpensive Nanotubes. Journal of the American Chemical Society, 2009, 131, 17080-17081.	13.7	58
142	Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 2009, 157, 1127-1133.	7.5	473
143	The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica Et Cosmochimica Acta, 2009, 73, 4409-4422.	3.9	318
144	Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. Geochimica Et Cosmochimica Acta, 2009, 73, 4750-4760.	3.9	28

#	Article	IF	CITATIONS
145	Direct and indirect CeO ₂ nanoparticles toxicity for <i>Escherichia coli</i> and <i>Synechocystis</i> . Nanotoxicology, 2009, 3, 284-295.	3.0	146
146	CeO ₂ nanoparticles induce DNA damage towards human dermal fibroblasts <i>in vitro</i> . Nanotoxicology, 2009, 3, 161-171.	3.0	179
147	Hydration and Dispersion of C ₆₀ in Aqueous Systems: The Nature of Waterâ^'Fullerene Interactions. Langmuir, 2009, 25, 11232-11235.	3.5	103
148	Rhizosphere pH Gradient Controls Copper Availability in a Strongly Acidic Soil. Environmental Science & Technology, 2009, 43, 5686-5691.	10.0	43
149	Apatite and Portland/apatite composite cements obtained using a hydrothermal method for retaining heavy metals. Journal of Hazardous Materials, 2008, 150, 99-108.	12.4	22
150	A role for adsorption in lead leachability from MSWI bottom ASH. Waste Management, 2008, 28, 1324-1330.	7.4	15
151	Enhanced Adsorption of Arsenic onto Maghemites Nanoparticles:  As(III) as a Probe of the Surface Structure and Heterogeneity. Langmuir, 2008, 24, 3215-3222.	3.5	185
152	Solubility of Fe–ettringite (Ca6[Fe(OH)6]2(SO4)3·26H2O). Geochimica Et Cosmochimica Acta, 2008, 72, 1-18.	3.9	101
153	Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. Chemosphere, 2008, 70, 1945-1951.	8.2	48
154	Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward <i>Escherichia coli</i> . Environmental Science & amp; Technology, 2008, 42, 6730-6735.	10.0	487
155	Synthesis of Large Quantities of Single-Walled Aluminogermanate Nanotube. Journal of the American Chemical Society, 2008, 130, 5862-5863.	13.7	72
156	Heavy Metal Tolerance in Stenotrophomonas maltophilia. PLoS ONE, 2008, 3, e1539.	2.5	112
157	Environmental Impact of Steel Slag Reused as Aggregates in Road Manufacturing: Molecular Mechanisms of Chromium and Vanadium Release. AIP Conference Proceedings, 2007, , .	0.4	4
158	New Methodological Approach for the Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation:Â Application to the Speciation of Vanadium in Oxide Phases from Steel Slag. Journal of Physical Chemistry B, 2007, 111, 5101-5110.	2.6	138
159	Toward direct, micron-scale XRF elemental maps and quantitative profiles of wet marine sediments. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	41
160	Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. Journal of Hazardous Materials, 2007, 139, 537-542.	12.4	184
161	Affinity of C60Fullerenes with Water. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 307-314.	2.1	46
162	In Vitro Interactions between DMSA-Coated Maghemite Nanoparticles and Human Fibroblasts:Â A Physicochemical and Cyto-Genotoxical Studyâ€. Environmental Science & Technology, 2006, 40, 4367-4373.	10.0	195

#	Article	IF	CITATIONS
163	New Combination of EXAFS Spectroscopy and Density Fractionation for the Speciation of Chromium within an Andosol. Environmental Science & amp; Technology, 2006, 40, 7602-7608.	10.0	47
164	Speciation of Cr and V within BOF steel slag reused in road constructions. Journal of Geochemical Exploration, 2006, 88, 10-14.	3.2	63
165	Zinc speciation in steel plant atmospheric emissions: A multi-technical approach. Journal of Geochemical Exploration, 2006, 88, 239-242.	3.2	21
166	Evolution of iron speciation during hydration of C4AF. Waste Management, 2006, 26, 720-724.	7.4	36
167	Cytotoxicity of CeO2Nanoparticles forEscherichia coli.Physico-Chemical Insight of the Cytotoxicity Mechanism. Environmental Science & Technology, 2006, 40, 6151-6156.	10.0	723
168	Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. Science of the Total Environment, 2006, 367, 769-777.	8.0	102
169	Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2006, 2, 391-395.	2.9	90
170	Rhenium migration at the Maqarin natural analogue site (Jordan). Radiochimica Acta, 2006, 94, 755-761.	1.2	2
171	Nanotechnologies: Tools for Sustainability in a New Wave of Water Treatment Processes. Integrated Environmental Assessment and Management, 2006, 2, 391.	2.9	2
172	Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2006, 2, 391-5.	2.9	7
173	DISTRIBUTION OF MAJOR AND TRACE ELEMENTS AT THE AGGREGATE SCALE IN A SOIL NATURALLY RICH IN TRACE ELEMENTS. Soil Science, 2005, 170, 516-529.	0.9	4
174	XAS Study of Iron and Arsenic Speciation during Fe(II) Oxidation in the Presence of As(III). Environmental Science & Technology, 2005, 39, 9478-9485.	10.0	68
175	Characterization of Iron-Oxides Formed by Oxidation of Ferrous Ions in the Presence of Various Bacterial Species and Inorganic Ligands. Geomicrobiology Journal, 2004, 21, 99-112.	2.0	74
176	Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. Comptes Rendus - Geoscience, 2004, 336, 567-577.	1.2	43
177	Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: Evidence from sediment incubations. Geochimica Et Cosmochimica Acta, 2004, 68, 3475-3486.	3.9	231
178	The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia). II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals, 2004, 39, 453-467.	0.6	28
179	Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes. Journal of Membrane Science, 2003, 227, 207-217.	8.2	75
180	Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217, 121-128.	4.7	78

#	Article	IF	CITATIONS
181	Zirconium speciation in microgels: kinetics aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217, 159-164.	4.7	1
182	Aqueous Zirconium Complexes for Gelling Polymers. A Combined X-ray Absorption Spectroscopy and Quantum Mechanical Study. Journal of Physical Chemistry B, 2003, 107, 2910-2920.	2.6	29
183	First Insights of Cr Speciation in Leached Portland Cement Using X-ray Spectromicroscopy. Environmental Science & Technology, 2003, 37, 4864-4870.	10.0	20
184	Synthesis and characterization of Manganese doped ferroxane nanoparticles. Materials Research Society Symposia Proceedings, 2003, 800, 27.	0.1	1
185	Evolution of Pb speciation in Portland cement during leaching. European Physical Journal Special Topics, 2003, 107, 143-146.	0.2	3
186	Effect of leaching on the crystallographic sites ofÂtrace metals associated with natural cements (site) Tj ETQq0 () 0 _{.0} gBT /C	Overlock 10 T
187	Hydrolysis of Iron(II) Chloride under Anoxic Conditions and Influence of SiO4Ligands. Langmuir, 2002, 18, 4292-4299.	3.5	19
188	Synthesis and Characterization of Carboxylateâ^'FeOOH Nanoparticles (Ferroxanes) and Ferroxane-Derived Ceramics. Chemistry of Materials, 2002, 14, 621-628.	6.7	43
189	Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles. Journal of Membrane Science, 2002, 205, 33-43.	8.2	46
190	Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4Ligands. 3. Semilocal Scale Structure of the Aggregates. Langmuir, 2001, 17, 4753-4757.	3.5	21
191	Speciation and Crystal Chemistry of Fe(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 2. Characterization of Siâ^'Fe Aggregates by FTIR and 29Si Solid-State NMR. Langmuir, 2001, 17, 1399-1405.	3.5	77
192	X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates. 2. Zinc. Langmuir, 2001, 17, 3658-3665.	3.5	55
193	Zirconium speciation in lactate solutions and polyacrylate gels. Journal of Synchrotron Radiation, 2001, 8, 686-688.	2.4	12
194	Crystal Chemistry of Colloids Obtained by Hydrolysis of Fe(III) in the Presence of SiO4 Ligands. Materials Research Society Symposia Proceedings, 2000, 658, 3361.	0.1	1
195	Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4Ligands. 1. An Fe K-Edge EXAFS Study. Langmuir, 2000, 16, 4726-4731.	3.5	93
196	X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates: 1. Case of Lead. Langmuir, 2000, 16, 9900-9906.	3.5	55
197	Lead, zinc and chromium (III) and (VI) speciation in hydrated cement phases. Waste Management Series, 2000, 1, 269-280.	0.0	10
198	Coagulation-Flocculation of Natural Organic Matter with Al Salts:Â Speciation and Structure of the Aggregates. Environmental Science & Technology, 2000, 34, 3242-3246.	10.0	95

JEROME ROSE

#	Article	IF	CITATIONS
199	Chemistry and structure of aggregates formed with Fe-salts and natural organic matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 147, 297-308.	4.7	99
200	Iron speciation in natural organic matter colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 136, 11-19.	4.7	57
201	Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4Ions. 4. Structure of the Aggregates. Langmuir, 1997, 13, 3886-3889.	3.5	18
202	Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4lons. 2. P K-Edge EXAFS Study. Langmuir, 1997, 13, 1827-1834.	3.5	94
203	Nucleation and Growth Mechanisms of Iron Oxyhydroxides in the Presence of PO4Ions. 3. Speciation of Fe by Small Angle X-ray Scattering. Langmuir, 1997, 13, 3882-3885.	3.5	24
204	Structure and Mechanisms of Formation of FeOOH(NO3) Oligomers in the Early Stages of Hydrolysis. Langmuir, 1997, 13, 3240-3246.	3.5	59
205	Physico-chemical study of fouling mechanisms of ultrafiltration membrane on Biwa lake (Japan). Journal of Membrane Science, 1997, 130, 53-62.	8.2	38
206	Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4lons. 1. Fe K-Edge EXAFS Study. Langmuir, 1996, 12, 6701-6707.	3.5	107
207	Nucleation and Growth of Fe(III)/PO4 Clusters. Materials Research Society Symposia Proceedings, 1996, 432, 151.	0.1	Ο
208	Electroweak studies ine+eâ^'collisions: 12<â^šs<46.78 GeV. Physical Review D, 1988, 38, 2665-2678.	4.7	18
209	Coethite, a tailor-made host for the critical metal scandium: The FexSc(1-x)OOH solid solution.	5.0	23