Petra Marschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864995/publications.pdf

Version: 2024-02-01

251 papers

13,663 citations

20817 60 h-index 27406 106 g-index

254 all docs

254 docs citations

times ranked

254

11780 citing authors

#	Article	IF	CITATIONS
1	Ensuring planetary survival: the centrality of organic carbon in balancing the multifunctional nature of soils. Critical Reviews in Environmental Science and Technology, 2022, 52, 4308-4324.	12.8	52
2	Direction and magnitude of the change in water content between two periods influence soil respiration, microbial biomass and nutrient availability which can be modified by intermittent air-drying. Soil Biology and Biochemistry, 2022, 166, 108559.	8.8	4
3	Rapid remediation of sandy sulfuric subsoils using straw-derived dissolved organic matter. Geoderma, 2022, 420, 115875.	5.1	3
4	Presence of wheat straw in soil influences nutrient availability and leaching in soil mulched with high or low C/N organic materials. Archives of Agronomy and Soil Science, 2021, 67, 342-353.	2.6	8
5	Phosphorus pools in acid sulfate soil are influenced by soil water content and form in which P is added. Geoderma, 2021, 381, 114692.	5.1	8
6	Phosphorus Pools in Acid Sulfate Soil Are Influenced by pH, Water Content, and Addition of Organic Matter. Journal of Soil Science and Plant Nutrition, 2021, 21, 1066-1075.	3.4	6
7	Addition of wheat straw to acid sulfate soils with different clay contents reduces acidification in two consecutive submerged-moist cycles. Geoderma, 2021, 385, 114892.	5.1	3
8	Rewetting Intensity Influences Soil Respiration and Nitrogen Availability. Journal of Soil Science and Plant Nutrition, 2021, 21, 2137-2144.	3.4	4
9	Transformation of jarosite during simulated remediation of a sandy sulfuric soil. Science of the Total Environment, 2021, 773, 145546.	8.0	12
10	Processes in submerged soils $\hat{a}\in$ " linking redox potential, soil organic matter turnover and plants to nutrient cycling. Plant and Soil, 2021, 464, 1.	3.7	44
11	Response of Soil Respiration and Microbial Biomass to Drying and Rewetting Is Greater in Planted than in Unplanted Soil. Journal of Soil Science and Plant Nutrition, 2021, 21, 2765-2769.	3.4	1
12	Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined ÂμCT and NanoSIMS analysis. Geoderma, 2021, 399, 115124.	5.1	8
13	Wheat straw decomposition stage has little effect on the removal of inorganic N and P from wastewater leached through sand-straw mixes. Environmental Technology (United Kingdom), 2020, 41, 3483-3492.	2.2	O
14	Changes in phosphorus pools in the detritusphere induced by removal of P or switch of residues with low and high C/P ratio. Biology and Fertility of Soils, 2020, 56 , $1-10$.	4.3	12
15	Phosphorus pools in sulfuric acid sulfate soils: influence of water content, pH increase and P addition. Journal of Soils and Sediments, 2020, 20, 1446-1453.	3.0	13
16	Amendment type and Time of Addition Influence the Effect of Short-term Heating on Soil Respiration and Nutrient Availability. Journal of Soil Science and Plant Nutrition, 2020, 20, 431-438.	3.4	1
17	Rapid recovery of net ecosystem production in a semi-arid woodland after a wildfire. Agricultural and Forest Meteorology, 2020, 291, 108099.	4.8	19
18	Sandy Soil Amended with Clay Soil: Effect of Clay Soil Properties on Soil Respiration, Microbial Biomass, and Water Extractable Organic C. Journal of Soil Science and Plant Nutrition, 2020, 20, 2465-2470.	3.4	9

#	Article	IF	Citations
19	Wheat Growth-Induced Changes in Phosphorus Pools in the Crop Residue Detritusphere Are Influenced by Residue C/P Ratio. Journal of Soil Science and Plant Nutrition, 2020, 20, 2579-2586.	3.4	4
20	Effect of Short-term Irrigation of Wastewater on Wheat Growth and Nitrogen and Phosphorus in Soil. Journal of Soil Science and Plant Nutrition, 2020, 20, 1589-1595.	3.4	3
21	Phosphorus and nitrogen in the soil interface between two plant residues differing in C/nutrient ratio: A short-term laboratory incubation study. Soil Ecology Letters, 2020, 2, 188-194.	4.5	4
22	Plant residues differing in C/N ratio in mulch and soil â€" the effect of the mulch on nutrient availability and microbial biomass is more pronounced with higher leaching amount. Soil Ecology Letters, 2020, 2, 317-326.	4.5	4
23	Soil respiration and nutrient availability after heating are influenced by salinity but not by prior drying and rewetting. Biology and Fertility of Soils, 2020, 56, 663-673.	4.3	O
24	Impact of Heating and Rewetting on Soil Respiration and Nutrient Availability Is Enhanced by Prior Growth of Plants. Journal of Soil Science and Plant Nutrition, 2020, 20, 925-932.	3.4	4
25	Threshold for labile phosphate in a sandy acid sulfate soil. Geoderma, 2020, 371, 114359.	5.1	9
26	Influence of mulch C/N ratio and decomposition stage on plant N uptake and N availability in soil with or without wheat straw. Journal of Plant Nutrition and Soil Science, 2019, 182, 879-887.	1.9	4
27	Vermicompost Influences Soil P Pools and Available Nâ€"Effect of Placement and Combination with Inorganic Fertiliser. Journal of Soil Science and Plant Nutrition, 2019, 19, 900-905.	3.4	4
28	Soil respiration and nutrient availability after short heating followed by rewetting differ between first and second heating and are influenced by the interval between heating events. Soil Biology and Biochemistry, 2019, 136, 107537.	8.8	3
29	Soil Water Availability Influences P Pools in the Detritusphere of Crop Residues with Different C/P Ratios. Journal of Soil Science and Plant Nutrition, 2019, 19, 771-779.	3.4	5
30	P Pools in Barley Detritusphere Are Influenced by N and P Addition to the Soil. Journal of Soil Science and Plant Nutrition, 2019, 19, 463-468.	3.4	2
31	Impact of a short heating event followed by rewetting on soil respiration and nutrient availability is not only due to soil drying during heating. Biology and Fertility of Soils, 2019, 55, 553-564.	4.3	6
32	P Pools After Seven-Year P Fertiliser Application Are Influenced by Wheat Straw Addition and Wheat Growth. Journal of Soil Science and Plant Nutrition, 2019, 19, 603-610.	3.4	9
33	Phosphorus Pools and Plant Uptake in Manure-Amended Soil. Journal of Soil Science and Plant Nutrition, 2019, 19, 175-186.	3.4	13
34	Consumption and alteration of different organic matter sources during remediation of a sandy sulfuric soil. Geoderma, 2019, 347, 220-232.	5.1	14
35	Plant Growth and Nutrient Uptake in Soil Amended with Mixes of Organic Materials Differing in C/N Ratio and Decomposition Stage. Journal of Soil Science and Plant Nutrition, 2019, 19, 512-523.	3.4	10
36	Nitrogen and phosphorus removal from wastewater by sand with wheat straw. Environmental Science and Pollution Research, 2019, 26, 11212-11223.	5.3	8

#	Article	IF	Citations
37	Influence of clay clod size and number for organic carbon distribution in sandy soil with clay addition. Geoderma, 2019, 335, 123-132.	5.1	7
38	Repeated rainfall in summer induces prolonged high soil respiration in a semiâ€arid floodplain woodland. Ecohydrology, 2018, 11, e1984.	2.4	2
39	Watering Frequency and Total Water Input Influence Wheat Growth, Soil Microbial Biomass and Nutrient Availability in a Silt Loam. Communications in Soil Science and Plant Analysis, 2018, 49, 380-388.	1.4	0
40	Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma, 2018, 319, 167-174.	5.1	43
41	Species wood density and the location of planted seedlings drive earlyâ€stage seedling survival during tropical forest restoration. Journal of Applied Ecology, 2018, 55, 1009-1018.	4.0	30
42	Mixing organic amendments with high and low C/N ratio influences nutrient availability and leaching in sandy soil. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	6
43	Amendment with high and low C/N residues- Influence of rate, order and frequency. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	0
44	Assessment of the Binding of Protons, Al and Fe to Biochar at Different pH Values and Soluble Metal Concentrations. Water (Switzerland), 2018, 10, 55.	2.7	7
45	Seedling growth responses to speciesâ€, neighborhoodâ€, and landscapeâ€scale effects during tropical forest restoration. Ecosphere, 2018, 9, e02386.	2.2	15
46	Clay amount and distribution influence organic carbon content in sand with subsoil clay addition. Soil and Tillage Research, 2018, 184, 253-260.	5 . 6	21
47	Respiration, microbial biomass and nutrient availability are influenced by previous and current soil water content in plant residue amended soil. Journal of Soil Science and Plant Nutrition, 2018, , 0-0.	3.4	4
48	Alteration of organic matter during remediation of acid sulfate soils. Geoderma, 2018, 332, 121-134.	5.1	17
49	Soil phosphorus pools in the detritusphere of plant residues with different C/P ratio—influence of drying and rewetting. Biology and Fertility of Soils, 2018, 54, 841-852.	4.3	17
50	Direct and carry-over effects of summer rainfall on ecosystem carbon uptake and water use efficiency in a semi-arid woodland. Agricultural and Forest Meteorology, 2018, 263, 15-24.	4.8	12
51	Clay Addition to Sandy Soil—Influence of Clay Type and Size on Nutrient Availability in Sandy Soils Amended with Residues Differing in C/N ratio. Pedosphere, 2017, 27, 293-305.	4.0	27
52	Increases in organic carbon concentration and stock after clay addition to sands: validation of sampling methodology and effects of modification method. Soil Research, 2017, 55, 124.	1.1	11
53	Prolonged recovery of acid sulfate soils with sulfuric materials following severe drought: causes and implications. Geoderma, 2017, 308, 312-320.	5.1	29
54	Residue addition combined with rewetting of dry soil – Effect of timing of residue addition on soil respiration, microbial biomass, nutrient availability and legacy effect. Geoderma, 2017, 299, 83-90.	5.1	5

#	Article	IF	CITATIONS
55	Soil Respiration, Microbial Biomass and Nutrient Availability in Soil After Addition of Residues with Adjusted N and P Concentrations. Pedosphere, 2017, 27, 76-85.	4.0	38
56	AVP1: One Protein, Many Roles. Trends in Plant Science, 2017, 22, 154-162.	8.8	78
57	Clay Addition to Sandy Soil Reduces Nutrient Leachingâ€"Effect of Clay Concentration and Ped Size. Communications in Soil Science and Plant Analysis, 2017, 48, 1813-1821.	1.4	37
58	Prior rainfall pattern determines response of net ecosystem carbon exchange to a large rainfall event in a semi-arid woodland. Agriculture, Ecosystems and Environment, 2017, 247, 112-119.	5.3	11
59	Soil respiration and microbial biomass in multiple drying and rewetting cycles – Effect of glucose addition. Geoderma, 2017, 305, 219-227.	5.1	19
60	Prior exposure to diurnal heating influences soil respiration and N availability upon rewetting. Biology and Fertility of Soils, 2017, 53, 715-721.	4.3	4
61	Linking organic matter composition in acid sulfate soils to pH recovery after re-submerging. Geoderma, 2017, 308, 350-362.	5.1	16
62	Impact of Salinity on Respiration and Organic Matter Dynamics in Soils is More Closely Related to Osmotic Potential than to Electrical Conductivity. Pedosphere, 2017, 27, 949-956.	4.0	31
63	Previous residue addition rate and C/N ratio influence nutrient availability and respiration rate after the second residue addition. Geoderma, 2017, 285, 217-224.	5.1	22
64	Residue addition frequency influences respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	3.4	1
65	Soil water content during and after plant growth influence nutrient availability and microbial biomass. Journal of Soil Science and Plant Nutrition, 2017, 17, 702-715.	3.4	25
66	Plant and microbial-induced changes in P pools in soil amended with straw and inorganic P. Journal of Soil Science and Plant Nutrition, 2017, 17, 1088-1101.	3.4	7
67	Soil amendment with high and low C/N residue -influence of low soil water content between first and second residue addition on soil respiration, microbial biomass and nutrient availability. Journal of Soil Science and Plant Nutrition, 2017, 17, 594-608.	3.4	10
68	Response of microbial activity to labile C addition in sandy soil from semi-arid woodland is influenced by vegetation patch and wildfire. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	3.4	1
69	Clay addition to sandy soil: effect of clay concentration and ped size on microbial biomass and nutrient dynamics after addition of low C/N ratio residue. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	8
70	Low soil water content during plant growth influences soil respiration and microbial biomass after plant removal and rewetting. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	3
71	Changes in P pools over three months in two soils amended with legume residues. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	1
72	Effect of residue mixtures on response of cumulative respiration to salinity. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	1

#	Article	IF	Citations
73	Multiple additions of rapidly decomposable residue alleviate the negative impact of salinity on microbial activity. Soil Research, 2016, 54, 692.	1.1	0
74	Organic matter addition can prevent acidification during oxidation of sandy hypersulfidic and hyposulfidic material: Effect of application form, rate and C/N ratio. Geoderma, 2016, 276, 26-32.	5.1	13
75	Addition of organic material to sulfuric soil can reduce leaching of protons, iron and aluminium. Geoderma, 2016, 271, 63-70.	5.1	10
76	Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release. Environmental Science and Pollution Research, 2016, 23, 23582-23592.	5. 3	2
77	A wildfire event influences ecosystem carbon fluxes but not soil respiration in a semi-arid woodland. Agricultural and Forest Meteorology, 2016, 226-227, 57-66.	4.8	14
78	Soil Respiration, Microbial Biomass C and N Availability in a Sandy Soil Amended with Clay and Residue Mixtures. Pedosphere, 2016, 26, 643-651.	4.0	8
79	Legacy effect of previous residue addition—influence of length of the moist period between residue additions on soil respiration, microbial biomass and nutrient availability. Biology and Fertility of Soils, 2016, 52, 1047-1057.	4.3	3
80	Nutrient availability, soil respiration and microbial biomass after the second residue addition are influenced by the C/N ratio of the first residue added, but not by drying and rewetting between residue amendments. European Journal of Soil Biology, 2016, 77, 68-76.	3.2	6
81	The Size of P Pools in Soils is Affected by Soil Properties and Compost Addition. Communications in Soil Science and Plant Analysis, 2016, 47, 1317-1328.	1.4	1
82	Type of organic carbon amendment influences pH changes in acid sulfate soils in flooded and dry conditions. Journal of Soils and Sediments, 2016, 16, 518-526.	3.0	19
83	Clay amendment to sandy soil—effect of clay concentration and ped size on nutrient dynamics after residue addition. Journal of Soils and Sediments, 2016, 16, 2072-2080.	3.0	32
84	Soil respiration, microbial biomass and nutrient availability in soil amended with high and low C/N residue $\hat{a}\in$ Influence of interval between residue additions. Soil Biology and Biochemistry, 2016, 95, 189-197.	8.8	38
85	Addition of clayey soils with high net negative acidity to sulfuric sandy soil can minimise pH changes during wet and dry periods. Geoderma, 2016, 269, 153-159.	5.1	2
86	Sorption of Water-Extractable Organic Carbon in Various Clay Subsoils: Effects of Soil Properties. Pedosphere, 2016, 26, 55-61.	4.0	6
87	Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments, 2016, 16, 939-953.	3.0	254
88	Soil respiration, microbial biomass and nutrient availability in soil after repeated addition of low and high C/N plant residues. Biology and Fertility of Soils, 2016, 52, 165-176.	4.3	42
89	Addition of organic matter influences pH changes in reduced and oxidised acid sulfate soils. Geoderma, 2016, 262, 125-132.	5.1	40
90	Influence of clay concentration, residue C/N and particle size on microbial activity and nutrient availability in clay-amended sandy soil. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	1

#	Article	IF	Citations
91	Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire. Biogeosciences, 2015, 12, 5093-5101.	3.3	12
92	Response of microbial activity and biomass to soil salinity when supplied with glucose and cellulose. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	2
93	Sulfate reduction in sulfuric material after re-flooding: Effectiveness of organic carbon addition and pH increase depends on soil properties. Journal of Hazardous Materials, 2015, 298, 138-145.	12.4	34
94	Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 2015, 3, 316-323.	6.5	417
95	Residue properties influence the impact of salinity on soil respiration. Biology and Fertility of Soils, 2015, 51, 99-111.	4.3	24
96	Responses of Soil Microbial Activity and Biomass to Salinity After Repeated Additions of Plant Residues. Pedosphere, 2015, 25, 177-185.	4.0	16
97	Cumulative respiration in two drying and rewetting cycles depends on the number and distribution of moist days. Geoderma, 2015, 243-244, 168-174.	5.1	18
98	Effects of Different Rates of Ca2+Addition on Respiration and Sorption of Water-Extractable Organic C to a Vertisol Subsoil. Communications in Soil Science and Plant Analysis, 2015, 46, 185-194.	1.4	3
99	Amount of organic matter required to induce sulfate reduction in sulfuric material after re-flooding is affected by soil nitrate concentration. Journal of Environmental Management, 2015, 151, 437-442.	7.8	29
100	Binding of water-extractable organic carbon to clay subsoil: effects of clay subsoil properties. Soil Research, 2015, 53, 81.	1.1	6
101	The number of moist days determines respiration in drying and rewetting cycles. Biology and Fertility of Soils, 2015, 51, 33-41.	4.3	22
102	Soil respiration, microbial biomass and nutrient availability after the second amendment are influenced by legacy effects of prior residue addition. Soil Biology and Biochemistry, 2015, 88, 169-177.	8.8	80
103	Organic Materials Differ in Ability to Remove Protons, Iron and Aluminium from Acid Sulfate Soil Drainage Water. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	7
104	Addition of glucose increases the activity of microbes in saline soils. Soil Research, 2014, 52, 568.	1.1	3
105	Respiration and Sorption of Water-Extractable Organic Carbon as Affected by Addition of Ca2+, Isolated Clay or Clay-Rich Subsoil to Sand. Pedosphere, 2014, 24, 98-106.	4.0	10
106	Effect of mono- and divalent cations on sorption of water-extractable organic carbon and microbial activity. Biology and Fertility of Soils, 2014, 50, 727-734.	4.3	17
107	Drying and rewetting – Effect of frequency of cycles and length ofÂmoist period on soil respiration and microbial biomass. European Journal of Soil Biology, 2014, 62, 132-137.	3.2	49
108	Retention and loss of water extractable carbon in soils: Effect of clay properties. Science of the Total Environment, 2014, 470-471, 400-406.	8.0	19

#	Article	IF	CITATIONS
109	Expression of the <i><scp>A</scp>rabidopsis</i> vacuolar <scp>H</scp> ⁺ â€pyrophosphatase gene (<i><scp>AVP</scp>1</i>) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnology Journal, 2014, 12, 378-386.	8.3	147
110	Growth and Water Use Efficiency of Capsicum annuumin a Silt Loam Soil Treated Three Years Previously With a Single Compost Application and Repeatedly Dried. International Journal of Vegetable Science, 2014, 20, 187-196.	1,3	1
111	Previous water content influences the response of soil respiration to changes in water content in non-saline and saline soils. Biology and Fertility of Soils, 2014, 50, 1129-1140.	4.3	4
112	Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management. Soil Biology and Biochemistry, 2014, 72, 172-179.	8.8	64
113	Changes in microbial biomass C, extractable C and available N during the early stages of decomposition of residue mixtures. Soil Research, 2014, 52, 366.	1.1	7
114	Addition of a clay subsoil to a sandy topsoil changes the response of microbial activity to drying and rewetting after residue addition $\hat{a}\in\hat{a}$ a model experiment. Journal of Plant Nutrition and Soil Science, 2014, 177, 532-540.	1.9	5
115	Response of microbial activity and biomass in rhizosphere and bulk soils to increasing salinity. Plant and Soil, 2014, 381, 297-306.	3.7	22
116	Soil respiration and microbial biomass after residue addition are influenced by the extent by which water-extractable organic C was removed from the residues. European Journal of Soil Biology, 2014, 63, 28-32.	3.2	8
117	SEVERITY OF SALINITY ACCURATELY DETECTED AND CLASSIFIED ON A PADDOCK SCALE WITH HIGH RESOLUTION MULTISPECTRAL SATELLITE IMAGERY. Land Degradation and Development, 2013, 24, 375-384.	3.9	33
118	Short-term effects of application of different rates of inorganic P and residue P on soil P pools and wheat growth. Journal of Plant Nutrition and Soil Science, 2013, 176, 696-702.	1.9	14
119	Addition of a clay subsoil to a sandy top soil alters CO2 release and the interactions in residue mixtures. Science of the Total Environment, 2013, 465, 248-254.	8.0	28
120	Nutrient release from composts into the surrounding soil. Geoderma, 2013, 195-196, 42-47.	5.1	36
121	Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Research, 2013, 51, 68.	1.1	32
122	Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils. Science of the Total Environment, 2013, 465, 226-232.	8.0	56
123	Soil salinity decreases global soil organic carbon stocks. Science of the Total Environment, 2013, 465, 267-272.	8.0	162
124	Decomposition of roots and shoots of perennial grasses and annual barleyâ€"separately or in two residue mixes. Biology and Fertility of Soils, 2013, 49, 673-680.	4.3	26
125	Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils. Biology and Fertility of Soils, 2013, 49, 415-425.	4.3	56
126	Salinity reduces the ability of soil microbes to utilise cellulose. Biology and Fertility of Soils, 2013, 49, 379-386.	4.3	31

#	Article	IF	Citations
127	Carbon mineralization in saline soils as affected by residue composition and water potential. Biology and Fertility of Soils, 2013, 49, 71-77.	4.3	42
128	Growth and rhizosphere P pools of legume–wheat rotations at low P supply. Biology and Fertility of Soils, 2013, 49, 41-49.	4.3	24
129	Impact of total water potential and varying contribution of matric and osmotic potential on carbon mineralization in saline soils. European Journal of Soil Biology, 2013, 56, 95-100.	3.2	11
130	Effects of salinity on microbial tolerance to drying and rewetting. Biogeochemistry, 2013, 112, 71-80.	3.5	64
131	Microbial activity and biomass recover rapidly after leaching of saline soils. Biology and Fertility of Soils, 2013, 49, 367-371.	4.3	43
132	Mobilisation of rock phosphate by surface application of compost. Biology and Fertility of Soils, 2013, 49, 287-294.	4.3	11
133	Respiration in a sand amended with clay – Effect of residue type andÂrate. European Journal of Soil Biology, 2013, 58, 19-23.	3.2	21
134	Response of soil respiration and microbial biomass to changing EC in saline soils. Soil Biology and Biochemistry, 2013, 65, 322-328.	8.8	55
135	Changes in phosphorus pools in three soils upon addition of legume residues differing in carbon/phosphorus ratio. Soil Research, 2013, 51, 484.	1.1	24
136	Addition of a fine-textured soil to compost to reduce nutrient leaching in a sandy soil. Soil Research, 2013, 51, 232.	1.1	15
137	Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	3.4	22
138	Effect of incorporated or mulched compost on leaf nutrient concentrations and performance of Vitis vinifera cv. Merlot. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	3.4	10
139	Compost effects on microbial biomass and soil P pools as affected by particle size and soil properties. Journal of Soil Science and Plant Nutrition, 2013, , 0-0.	3.4	11
140	Sorption of dissolved organic matter in salt-affected soils: Effect of salinity, sodicity and texture. Science of the Total Environment, 2012, 435-436, 337-344.	8.0	74
141	Effects of tannery sludge application on physiological and fatty acid profiles of the soil microbial community. Applied Soil Ecology, 2012, 61, 92-99.	4.3	15
142	Effects of land use intensity on dissolved organic carbon properties and microbial community structure. European Journal of Soil Biology, 2012, 52, 67-72.	3.2	54
143	Measuring microbial biomass carbon by direct extraction â€" Comparison with chloroform fumigation-extraction. European Journal of Soil Biology, 2012, 53, 103-106.	3.2	53
144	Simulation of Salinity Effects on Past, Present, and Future Soil Organic Carbon Stocks. Environmental Science & Environmental	10.0	41

#	Article	IF	CITATIONS
145	Grain legume pre-crops and their residues affect the growth, P uptake and size of P pools in the rhizosphere of the following wheat. Biology and Fertility of Soils, 2012, 48, 775-785.	4.3	22
146	Differential effects of composts on properties of soils with different textures. Biology and Fertility of Soils, 2012, 48, 699-707.	4.3	33
147	Nutrient Availability in Soils. , 2012, , 315-330.		122
148	Effect of Internal and External Factors on Root Growth and Development., 2012,, 331-346.		41
149	Rhizosphere Biology., 2012,, 369-388.		79
150	Soil pH is the main factor influencing growth and rhizosphere properties of wheat following different pre-crops. Plant and Soil, 2012, 360, 271-286.	3.7	47
151	Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant and Soil, 2012, 354, 197-209.	3.7	57
152	Potential soil P mobilisation capacity–method development and comparison of rhizosphere soil from different crops. Plant and Soil, 2012, 354, 259-267.	3.7	9
153	Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant and Soil, 2012, 354, 283-298.	3.7	71
154	Drying and wetting in saline and saline-sodic soilsâ€"effects on microbial activity, biomass and dissolved organic carbon. Plant and Soil, 2012, 355, 51-62.	3.7	40
155	Short-term carbon mineralization in saline–sodic soils. Biology and Fertility of Soils, 2012, 48, 475-479.	4.3	14
156	Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology and Biochemistry, 2012, 45, 8-13.	8.8	158
157	Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. Soil Biology and Biochemistry, 2012, 47, 175-178.	8.8	54
158	Changes in soil P pools during legume residue decomposition. Soil Biology and Biochemistry, 2012, 49, 70-77.	8.8	81
159	Microscale distribution and function of soil microorganisms in the interface between rhizosphere and detritusphere. Soil Biology and Biochemistry, 2012, 49, 174-183.	8.8	64
160	Addition of organic and inorganic P sources to soil $\hat{a} \in \text{``Effects on P pools and microorganisms. Soil Biology and Biochemistry, 2012, 49, 106-113.}$	8.8	125
161	Response of microbial activity and biomass to increasing salinity depends on the final salinity, not the original salinity. Soil Biology and Biochemistry, 2012, 53, 50-55.	8.8	76
162	Growth, P uptake in grain legumes and changes in rhizosphere soil P pools. Biology and Fertility of Soils, 2012, 48, 151-159.	4.3	51

#	Article	IF	Citations
163	Introducing a Decomposition Rate Modifier in the Rothamsted Carbon Model to Predict Soil Organic Carbon Stocks in Saline Soils. Environmental Science & Environmental Science & 2011, 45, 6396-6403.	10.0	60
164	Microbial activity and biomass and N and P availability in a saline sandy loam amended with inorganic N and lupin residues. European Journal of Soil Biology, 2011, 47, 310-315.	3.2	21
165	Relationships between soil organic matter and the soil microbial biomass (size, functional diversity,) Tj ETQq1 1 49, 582.	0.784314 1.1	rgBT /Overlo 67
166	Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat (Triticum aestivum L.) in sand. European Journal of Soil Science, 2011, 62, 666-675.	3.9	27
167	Identification of \hat{l}^2 -propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiology Ecology, 2011, 75, 163-172.	2.7	91
168	The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biology and Biochemistry, 2011, 43, 445-451.	8.8	164
169	Relationships between carbon dioxide emission and soil properties in salt-affected landscapes. Soil Biology and Biochemistry, 2011, 43, 667-674.	8.8	158
170	Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biology and Biochemistry, 2011, 43, 883-894.	8.8	311
171	Soil microbial activity and community composition: Impact of changes in matric and osmotic potential. Soil Biology and Biochemistry, 2011, 43, 1229-1236.	8.8	142
172	Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 2011, 43, 1908-1916.	8.8	147
173	The extent of drying influences the flush of respiration after rewetting in non-saline and saline soils. Soil Biology and Biochemistry, 2011, 43, 2265-2272.	8.8	32
174	Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant and Soil, 2011, 344, 241-254.	3.7	157
175	Recovery of soil respiration after drying. Plant and Soil, 2011, 348, 269-279.	3.7	23
176	Microbial activity and community composition in saline and non-saline soils exposed to multiple drying and rewetting events. Plant and Soil, 2011, 348, 103-113.	3.7	25
177	Changes in water content of two agricultural soils does not alter labile P and C pools. Plant and Soil, 2011, 348, 185-201.	3.7	10
178	Rapid changes in carbon and phosphorus after rewetting of dry soil. Biology and Fertility of Soils, 2011, 47, 41-50.	4.3	55
179	Legume residue influence arbuscular mycorrhizal colonisation and P uptake by wheat. Biology and Fertility of Soils, 2011, 47, 701-707.	4.3	20
180	Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. Biology and Fertility of Soils, 2010, 46, 79-91.	4.3	121

#	Article	IF	Citations
181	Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate?. Biology and Fertility of Soils, 2010, 46, 781-792.	4.3	106
182	Rewetting CO2 pulses in Australian agricultural soils and the influence of soil properties. Biology and Fertility of Soils, 2010, 46, 739-753.	4.3	78
183	Wheat growth in a saline sandy loam soil as affected by N form and application rate. Plant and Soil, 2010, 328, 303-312.	3.7	29
184	Detection of aluminium tolerance plasmids and microbial diversity in the rhizosphere of plants grown in acidic volcanic soil. European Journal of Soil Biology, 2010, 46, 255-263.	3.2	20
185	The Effects of Plant Breeding on Soil Microbes. , 2010, , 297-314.		2
186	Changes in Nitrogen, Phosphorus, and Potassium in a Longâ€Term Continuous Maize–Wheat Cropping System in India. Communications in Soil Science and Plant Analysis, 2009, 40, 3348-3366.	1.4	6
187	Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41, 1406-1416.	8.8	215
188	Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biology and Biochemistry, 2009, 41, 1475-1482.	8.8	63
189	Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology and Biochemistry, 2009, 41, 1966-1975.	8.8	149
190	Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant and Soil, 2008, 303, 253-264.	3.7	54
191	Soil organic phosphorus and microbial community composition as affected by 26Âyears of different management strategies. Biology and Fertility of Soils, 2008, 44, 717-726.	4.3	53
192	Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils, 2008, 44, 1025-1034.	4.3	211
193	Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture. Journal of Environmental Sciences, 2008, 20, 1231-1237.	6.1	40
194	Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biology and Biochemistry, 2008, 40, 932-946.	8.8	79
195	Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and Biochemistry, 2008, 40, 1908-1915.	8.8	80
196	The role of rhizosphere microorganisms in relation to P uptake by plants. Plant Ecophysiology, 2008, , 165-176.	1.5	37
197	Is cortical root colonization required for carbon transfer to arbuscular mycorrhizal fungi? Evidence from colonization phenotypes and spore production in the reduced mycorrhizal colonization (rmc) mutant of tomato. Botany, 2008, 86, 1009-1019.	1.0	14
198	Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria. Microbes and Environments, 2008, 23, 182-191.	1.6	149

#	Article	IF	CITATIONS
199	Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology, 2007, 43, 31-38.	3.2	103
200	Soil Microbial Community Structure and Function Assessed by FAME, PLFA and DGGE — Advantages and Limitations. Soil Biology, 2007, , 181-200.	0.8	18
201	The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiology Ecology, 2007, 59, 661-670.	2.7	115
202	Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 2007, 39, 87-98.	8.8	66
203	Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil Biology and Biochemistry, 2007, 39, 249-256.	8.8	56
204	Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 2007, 39, 744-756.	8.8	253
205	Measuring rates of gross and net mineralisation of organic phosphorus in soils. Soil Biology and Biochemistry, 2007, 39, 900-913.	8.8	81
206	Belowground interactions between intercropped wheat and Brassicas in acidic and alkaline soils. Soil Biology and Biochemistry, 2007, 39, 961-971.	8.8	29
207	Chemical changes and phosphorus release during decomposition of pea residues in soil. Soil Biology and Biochemistry, 2007, 39, 2696-2699.	8.8	30
208	Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2007, 43, 565-574.	4.3	158
209	Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. Biology and Fertility of Soils, 2007, 44, 143-153.	4.3	45
210	Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biology and Fertility of Soils, 2007, 44, 307-314.	4.3	48
211	Contributions of Rhizosphere Interactions to Soil Biological Fertility. , 2007, , 81-98.		6
212	Plant-Microbe Interactions in the Rhizosphere and Nutrient Cycling., 2007, , 159-182.		23
213	Seedling biomass and element content of Pinus sylvestris and Pinus nigra grown in sandy substrates with lignite. Geoderma, 2006, 136, 573-578.	5.1	28
214	The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environmental Pollution, 2006, 143, 129-137.	7.5	211
215	Rhizosphere Properties of Poaceae Genotypes Under P-limiting Conditions. Plant and Soil, 2006, 283, 11-24.	3.7	92
216	Rhizosphereâ€"perspectives and Challengesâ€"a Tribute to Lorenz Hiltner 12â€"17 September 2004â€"Munich, Germany. Plant and Soil, 2006, 283, vii-viii.	3.7	32

#	Article	IF	CITATIONS
217	Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Applied Microbiology and Biotechnology, 2006, 69, 589-596.	3 . 6	57
218	Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 2006, 38, 1430-1437.	8.8	169
219	Long-term effects of crop rotation, stubble management and tillage on soil phosphorus dynamics. Soil Research, 2006, 44, 611.	1.1	73
220	Bacterial Community Composition and Activity in Rhizosphere of Roots Colonized by Arbuscular Mycorrhizal Fungi., 2006,, 139-154.		20
221	The influence of season, agricultural management, and soil properties on gross nitrogen transformations and bacterial community structure. Soil Research, 2006, 44, 453.	1.1	53
222	Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytologist, 2005, 168, 305-312.	7.3	403
223	Effect of drying and rewetting on phosphorus transformations in red brown soils with different soil organic matter content. Soil Biology and Biochemistry, 2005, 37, 1573-1576.	8.8	60
224	The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biology and Biochemistry, 2005, 37, 1726-1737.	8.8	181
225	Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite. Microbiological Research, 2005, 160, 177-187.	5.3	68
226	Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 2005, 273, 245-256.	3.7	91
227	Root Distribution and Nutrient Status of Mycorrhizal and Non-mycorrhizal Pinus sylvestris L. Seedlings Growing in a Sandy Substrate with Lignite Fragments. Plant and Soil, 2005, 276, 347-357.	3.7	12
228	Wheat Responses to Arbuscular Mycorrhizal Fungi in a Highly Calcareous Soil Differ from those of Clover, and Change with Plant Development and P supply. Plant and Soil, 2005, 277, 221-232.	3.7	76
229	Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Applied Soil Ecology, 2005, 28, 23-36.	4.3	152
230	Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in Western Australia. Applied Soil Ecology, 2005, 28, 191-201.	4.3	59
231	Growth, phosphorus uptake, and rhizosphere microbial-community composition of a phosphorus-efficient wheat cultivar in soils differing in pH. Journal of Plant Nutrition and Soil Science, 2005, 168, 343-351.	1.9	74
232	2-Phenylethylisothiocyanate concentration and bacterial community composition in the rhizosphere of field-grown canola. Functional Plant Biology, 2004, 31, 623.	2.1	28
233	Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 2004, 261, 199-208.	3.7	525
234	Legume rotation effects on early growth and rhizosphere microbiology of sorghum in West African soils. Plant and Soil, 2004, 264, 325-334.	3.7	19

#	Article	IF	Citations
235	Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil. Biology and Fertility of Soils, 2004, 40, 1-6.	4.3	43
236	Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil, 2003, 251, 279-289.	3.7	175
237	2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biology and Biochemistry, 2003, 35, 445-452.	8.8	113
238	Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 2003, 35, 453-461.	8.8	783
239	Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Journal of Plant Nutrition and Soil Science, 2003, 166, 712-718.	1.9	41
240	Seasonal effects on microorganisms in the rhizosphere of two tropical plants in a polyculture agroforestry system in Central Amazonia, Brazil. Biology and Fertility of Soils, 2002, 35, 68-71.	4.3	37
241	Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil, 2002, 238, 301-312.	3.7	122
242	Title is missing!. Plant and Soil, 2002, 246, 167-174.	3.7	158
243	Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 2001, 33, 1437-1445.	8.8	656
244	Arbuscular mycorrhizal infection changes the bacterial $16 {\rm \hat{A}S}$ rDNA community composition in the rhizosphere of maize. Mycorrhiza, 2001, 11 , 297-302.	2.8	140
245	Effect of N concentration and N source on root colonization by Pseudomonas fluorescens 2-79RLI. Plant and Soil, 1999, 215, 135-141.	3.7	18
246	Phytosiderophores decrease iron stress and pyoverdine production of Pseudomonas fluorescens PF-5 (pvd-inaZ). Soil Biology and Biochemistry, 1998, 30, 1275-1280.	8.8	43
247	Title is missing!. Plant and Soil, 1997, 189, 11-20.	3.7	103
248	Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2–79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Soil Biology and Biochemistry, 1996, 28, 869-876.	8.8	61
249	Effect of manganese-reducing rhizosphere bacteria on the growth of Gaeumannomyces graminis var. tritici and on manganese uptake by wheat (Triticum aestivum L.). Biology and Fertility of Soils, 1991, 12, 33-38.	4.3	31
250	Addition of Clayey Soil to Sandy Soil Increases Sorption of Water-Extractable Organic C But Also Its Release. Journal of Soil Science and Plant Nutrition, $0, 1$.	3.4	0
251	Time between two partial rewetting events influences the respiration flush and microbial growth after the final rewetting. Biology and Fertility of Soils, 0 , 1 .	4.3	1