
Sebastian Deindl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864920/publications.pdf Version: 2024-02-01

SERASTIAN DEINDI

#	Article	IF	CITATIONS
1	ADPâ€ribosyltransferases, an update on function and nomenclature. FEBS Journal, 2022, 289, 7399-7410.	4.7	150
2	Sequence specificity in DNA binding is mainly governed by association. Science, 2022, 375, 442-445.	12.6	19
3	Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD. Molecular Cell, 2021, 81, 767-783.e11.	9.7	72
4	A unique histone 3 lysine 14 chromatin signature underlies tissue-specific gene regulation. Molecular Cell, 2021, 81, 1766-1780.e10.	9.7	17
5	More Than Just Letters and Chemistry: Genomics Goes Mechanics. Trends in Biochemical Sciences, 2021, 46, 431-432.	7.5	0
6	Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. ELife, 2021, 10, .	6.0	21
7	DNA surface exploration and operator bypassing during target search. Nature, 2020, 583, 858-861.	27.8	54
8	Recent advances in single-molecule fluorescence microscopy render structural biology dynamic. Current Opinion in Structural Biology, 2020, 65, 61-68.	5.7	18
9	Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Reports, 2020, 33, 108529.	6.4	20
10	Remodeling the genome with DNA twists. Science, 2019, 366, 35-36.	12.6	18
11	Long Time-Scale Atomistic Simulations of the Structure and Dynamics of Transcription Factor-DNA Recognition. Journal of Physical Chemistry B, 2019, 123, 3576-3590.	2.6	21
12	Direct observation of coordinated DNA movements on the nucleosome during chromatin remodelling. Nature Communications, 2019, 10, 1720.	12.8	71
13	The ribosomal protein S1-dependent standby site in <i>tisB</i> mRNA consists of a single-stranded region and a 5′ structure element. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15901-15906.	7.1	32
14	Structure-guided approach to site-specific fluorophore labeling of the lac repressor Lacl. PLoS ONE, 2018, 13, e0198416.	2.5	11
15	New enzymatic and mass spectrometric methodology for the selective investigation of gut microbiota-derived metabolites. Chemical Science, 2018, 9, 6233-6239.	7.4	38
16	Measuring the Orientation of Single Proteins Interacting with DNA using Fluorescence Polarization Microscopy. Biophysical Journal, 2017, 112, 169a.	0.5	0
17	Development of a novel therapeutic vaccine carrier that sustains high antibody titers against several targets simultaneously. FASEB Journal, 2017, 31, 1204-1214.	0.5	11
18	Mechanistic Insights into Autoinhibition of the Oncogenic Chromatin Remodeler ALC1. Molecular Cell, 2017, 68, 847-859.e7.	9.7	53

SEBASTIAN DEINDL

#	Article	IF	CITATIONS
19	Stepwise nucleosome translocation by RSC remodeling complexes. ELife, 2016, 5, .	6.0	63
20	The Chd1 chromatin remodeler shifts hexasomes unidirectionally. ELife, 2016, 5, .	6.0	69
21	Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA. Nature, 2014, 512, 213-217.	27.8	78
22	Nucleosome mobilization by ISW2 requires the concerted action of the ATPase and SLIDE domains. Nature Structural and Molecular Biology, 2013, 20, 222-229.	8.2	54
23	ISWI Remodelers Slide Nucleosomes with Coordinated Multi-Base-Pair Entry Steps and Single-Base-Pair Exit Steps. Cell, 2013, 152, 442-452.	28.9	150
24	Structural Basis for Activation of ZAP-70 by Phosphorylation of the SH2-Kinase Linker. Molecular and Cellular Biology, 2013, 33, 2188-2201.	2.3	90
25	Monitoring Conformational Dynamics with Single-Molecule Fluorescence Energy Transfer: Applications in Nucleosome Remodeling. Methods in Enzymology, 2012, 513, 59-86.	1.0	17
26	Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Nature Structural and Molecular Biology, 2010, 17, 264-272.	8.2	108
27	Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20699-20704.	7.1	32
28	The structure, regulation, and function of ZAPâ€70. Immunological Reviews, 2009, 228, 41-57.	6.0	203
29	Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment. Cell, 2009, 137, 1293-1307.	28.9	506
30	Structural Basis for the Inhibition of Tyrosine Kinase Activity of ZAP-70. Cell, 2007, 129, 735-746.	28.9	217
31	Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II. FEBS Journal, 2006, 273, 682-694.	4.7	92
32	Structure of the Autoinhibited Kinase Domain of CaMKII and SAXS Analysis of the Holoenzyme. Cell, 2005, 123, 849-860.	28.9	293
33	Photocontrol of Cell Adhesion Processes. Chemistry and Biology, 2003, 10, 487-490.	6.0	60

3