
Imre E Somssich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8648958/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5, 199-206.	8.8	2,462
2	WRKY transcription factors. Trends in Plant Science, 2010, 15, 247-258.	8.8	2,080
3	Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10, 366-371.	7.1	1,159
4	The Role of WRKY Transcription Factors in Plant Immunity. Plant Physiology, 2009, 150, 1648-1655.	4.8	1,012
5	WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 2004, 7, 491-498.	7.1	832
6	Nuclear Activity of MLA Immune Receptors Links Isolate-Specific and Basal Disease-Resistance Responses. Science, 2007, 315, 1098-1103.	12.6	659
7	Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8024-8029.	7.1	635
8	Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes and Development, 2002, 16, 1139-1149.	5.9	591
9	Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes EMBO Journal, 1996, 15, 5690-5700.	7.8	575
10	Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO Journal, 1999, 18, 4689-4699.	7.8	497
11	Arabidopsis WRKY33 Is a Key Transcriptional Regulator of Hormonal and Metabolic Responses toward <i>Botrytis cinerea</i> Infection Â. Plant Physiology, 2012, 159, 266-285.	4.8	487
12	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	7.8	480
13	Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant Journal, 1999, 19, 9-20.	5.7	402
14	Transcriptional networks in plant immunity. New Phytologist, 2015, 206, 932-947.	7.3	401
15	Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 2008, 68, 81-92.	3.9	395
16	The Transcription Factors WRKY11 and WRKY17 Act as Negative Regulators of Basal Resistance in Arabidopsis thaliana. Plant Cell, 2006, 18, 3289-3302.	6.6	391
17	A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant Journal, 2001, 28, 123-133.	5.7	382
18	Synthetic Plant Promoters Containing Defined Regulatory Elements Provide Novel Insights into Pathogen- and Wound-Induced Signaling. Plant Cell, 2002, 14, 749-762.	6.6	375

#	Article	IF	CITATIONS
19	Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1998, 1, 311-315.	7.1	358
20	Pathogen defence in plants — a paradigm of biological complexity. Trends in Plant Science, 1998, 3, 86-90.	8.8	345
21	Coiled-Coil Domain-Dependent Homodimerization of Intracellular Barley Immune Receptors Defines a Minimal Functional Module for Triggering Cell Death. Cell Host and Microbe, 2011, 9, 187-199.	11.0	269
22	Members of the Arabidopsis WRKY Group III Transcription Factors Are Part of Different Plant Defense Signaling Pathways. Molecular Plant-Microbe Interactions, 2003, 16, 295-305.	2.6	250
23	The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 2007, 226, 125-137.	3.2	243
24	Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant Journal, 2010, 64, 912-923.	5.7	241
25	The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Molecular Biology, 1995, 27, 327-338.	3.9	235
26	Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. ELife, 2015, 4, e07295.	6.0	232
27	The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. ELife, 2013, 2, e00983.	6.0	208
28	Defense Responses of Plants to Pathogens. Advances in Botanical Research, 1995, 21, 1-34.	1.1	207
29	Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription Factors during Early MAMP-Triggered Immunity. Plant Cell, 2017, 29, 20-38.	6.6	202
30	Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Molecular Genetics and Genomics, 1988, 213, 93-98.	2.4	193
31	Stimulus-Dependent, Promoter-Specific Binding of Transcription Factor WRKY1 to Its Native Promoter and the Defense-Related Gene PcPR1-1 in Parsley[W]. Plant Cell, 2004, 16, 2573-2585.	6.6	180
32	UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1903-1907.	7.1	175
33	Transcriptional events defining plant immune responses. Current Opinion in Plant Biology, 2017, 38, 1-9.	7.1	165
34	Induction by fungal elicitor of S-adenosyl-L-methionine synthetase and S-adenosyl-L-homocysteine hydrolase mRNAs in cultured cells and leaves of Petroselinum crispum Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4713-4717.	7.1	162
35	An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods, 2006, 2, 16.	4.3	155
36	Gene activation by UV light, fungal elicitor or fungal infection in <i>Petroselinum crispum</i> is correlated with repression of cell cycleâ€related genes. Plant Journal, 1995, 8, 865-876.	5.7	151

#	Article	IF	CITATIONS
37	Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14569-14576.	7.1	148
38	Expression of AtWRKY33 Encoding a Pathogen- or PAMP-Responsive WRKY Transcription Factor Is Regulated by a Composite DNA Motif Containing W Box Elements. Molecular Plant-Microbe Interactions, 2007, 20, 420-429.	2.6	146
39	Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene Plant Cell, 1994, 6, 695-708.	6.6	128
40	Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus EMBO Journal, 1992, 11, 4677-4684.	7.8	117
41	Isolation of putative defense-related genes from Arabidopsis thaliana and expression in fungal elicitor-treated cells. Plant Molecular Biology, 1993, 21, 385-389.	3.9	108
42	The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by <i>Ralstonia solanacearum</i> . Plant Journal, 2008, 56, 935-947.	5.7	101
43	Differential early activation of defense-related genes in elicitor-treated parsley cells. Plant Molecular Biology, 1989, 12, 227-234.	3.9	98
44	Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 92-100.	2.4	96
45	Analyses of <i>wrky18 wrky40</i> Plants Reveal Critical Roles of SA/EDS1 Signaling and Indole-Glucosinolate Biosynthesis for <i>Golovinomyces orontii</i> Resistance and a Loss-of Resistance Towards <i>Pseudomonas syringae</i> pv. <i>tomato</i> AvrRPS4. Molecular Plant-Microbe Interactions. 2013. 26. 758-767.	2.6	91
46	Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol:NADP+ oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14199-14203.	7.1	83
47	Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Molecular Biology, 1993, 21, 673-684.	3.9	82
48	A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley EMBO Journal, 1990, 9, 2945-2950.	7.8	77
49	Transcriptional Responses of Arabidopsis thaliana during Wilt Disease Caused by the Soil-Borne Phytopathogenic Bacterium, Ralstonia solanacearum. PLoS ONE, 2008, 3, e2589.	2.5	77
50	Chemical Interference of Pathogen-associated Molecular Pattern-triggered Immune Responses in Arabidopsis Reveals a Potential Role for Fatty-acid Synthase Type II Complex-derived Lipid Signals. Journal of Biological Chemistry, 2007, 282, 6803-6811.	3.4	68
51	A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods, 2005, 1, 4.	4.3	67
52	The wheat <i>Mla</i> homologue <i>TmMla1</i> exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant Journal, 2011, 65, 610-621.	5.7	65
53	T-DNA–mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nature Biotechnology, 2008, 26, 1015-1017.	17.5	64
54	Rapid and Transient Induction of a Parsley Microsomal [delta]12 Fatty Acid Desaturase mRNA by Fungal Elicitor. Plant Physiology, 1997, 115, 283-289.	4.8	63

#	Article	IF	CITATIONS
55	<i>Botrytis cinerea</i> B05.10 promotes disease development in <i>Arabidopsis</i> by suppressing WRKY33â€mediated host immunity. Plant, Cell and Environment, 2017, 40, 2189-2206.	5.7	60
56	Principles and characteristics of the Arabidopsis <scp>WRKY</scp> regulatory network during early <scp>MAMP</scp> â€ŧriggered immunity. Plant Journal, 2018, 96, 487-502.	5.7	57
57	Functional dissection of the <scp><i>PROPEP2</i></scp> and <scp><i>PROPEP3</i></scp> promoters reveals the importance of <scp>WRKY</scp> factors in mediating microbeâ€associated molecular patternâ€induced expression. New Phytologist, 2013, 198, 1165-1177.	7.3	56
58	<i>Arabidopsis</i> TTG2 Regulates <i>TRY</i> Expression through Enhancement of Activator Complex-Triggered Activation Â. Plant Cell, 2014, 26, 4067-4083.	6.6	55
59	Isolation of putative plant transcriptional coactivators using a modified two-hybrid system incorporating a GFP reporter gene. Plant Journal, 1998, 14, 685-692.	5.7	50
60	Two pathogen-responsive genes in parsley encode a tyrosine-rich hydroxyproline-rich glycoprotein (hrgp) and an anionic peroxidase. Molecular Genetics and Genomics, 1995, 247, 444-452.	2.4	48
61	Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta, 2008, 228, 293-306.	3.2	48
62	Transcriptional Plant Responses Critical for Resistance Towards Necrotrophic Pathogens. Frontiers in Plant Science, 2011, 2, 76.	3.6	47
63	Elicitor-inducible and constitutive in vivo DNA footprints indicate novel cis-acting elements in the promoter of a parsley gene encoding pathogenesis-related protein 1 Plant Cell, 1991, 3, 309-315.	6.6	46
64	A novel regulatory element involved in rapid activation of parsleyELI7gene family members by fungal elicitor or pathogen infection. Molecular Plant Pathology, 2000, 1, 243-251.	4.2	45
65	<i>Arabidopsis</i> scaffold protein RACK1A interacts with diverse environmental stress and photosynthesis related proteins. Plant Signaling and Behavior, 2013, 8, e24012.	2.4	43
66	Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene, 1997, 194, 273-276.	2.2	41
67	A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen Pseudomonas syringae on Arabidopsis thaliana. Plant Methods, 2016, 12, 48.	4.3	41
68	Detection of a single-copy gene on plant chromosomes by in situ hybridization. Molecular Genetics and Genomics, 1988, 211, 143-147.	2.4	38
69	Influence of bacterial strain genotype on transient expression of plasmid DNA in plant protoplasts. Plant Journal, 1993, 4, 587-592.	5.7	36
70	Developmental and auxinâ€induced expression of the <i>Arabidopsis prha</i> homeobox gene. Plant Journal, 1997, 12, 635-647.	5.7	35
71	A Novel Type of Pathogen Defense-Related Cinnamyl Alcohol Dehydrogenase. Biological Chemistry, 1997, 378, 909-914.	2.5	29
72	Plant Homeodomain Protein Involved in Transcriptional Regulation of a Pathogen Defense-Related Gene. Plant Cell, 1994, 6, 695.	6.6	27

#	Article	IF	CITATIONS
73	PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3) modulates immunity in Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71, 850-864.	4.8	27
74	The pattern of early replicating bands in the chromosomes of the mouse. Cytogenetic and Genome Research, 1981, 30, 222-231.	1.1	26
75	MAP kinases and plant defence. Trends in Plant Science, 1997, 2, 406-408.	8.8	25
76	Elucidating the role of WRKY27 in male sterility in Arabidopsis. Plant Signaling and Behavior, 2018, 13, e1363945.	2.4	23
77	Closing Another Gap in the Plant SAR Puzzle. Cell, 2003, 113, 815-816.	28.9	22
78	Early replication banding reveals a strongly conserved functional pattern in mammalian chromosomes. Chromosoma, 1985, 93, 69-76.	2.2	21
79	Correlation between tumorigenicity and banding pattern of chromosome 15 in murine T-cell leukemia cells and hybrids of normal and malignant cells. Chromosoma, 1984, 91, 39-45.	2.2	17
80	Regulatory Elements Governing Pathogenesis-Related (PR) Gene Expression. Results and Problems in Cell Differentiation, 1994, 20, 163-179.	0.7	14
81	Cytogenetic replication studies on murine T-cell leukemias with special consideration to chromosome 15. Chromosoma, 1982, 86, 197-208.	2.2	10
82	Dampening of Bait Proteins in the Two-Hybrid System. Analytical Biochemistry, 1997, 248, 184-186.	2.4	9
83	Interactions Between Arabidopsis Thaliana and Phytopathogenic Pseudomonas Pathovars: A Model for the Genetics of Disease Resistance. Current Plant Science and Biotechnology in Agriculture, 1991, , 78-83.	0.0	8
84	Activation of defense-related genes in parsley leaves by infection withErwinia chrysanthemi. European Journal of Plant Pathology, 1995, 101, 549-559.	1.7	7
85	Chromatin Immunoprecipitation to Identify Global Targets of WRKY Transcription Factor Family Members Involved in Plant Immunity. Methods in Molecular Biology, 2011, 712, 45-58.	0.9	6
86	Identification of functional cis-regulatory elements by sequential enrichment from a randomized synthetic DNA library. BMC Plant Biology, 2013, 13, 164.	3.6	6
87	Elicitor-Inducible and Constitutive in vivo DNA Footprints Indicate Novel cis-Acting Elements in the Promoter of a Parsley Gene Encoding Pathogenesis-Related Protein 1. Plant Cell, 1991, 3, 309.	6.6	3
88	Cloning of PCR products using the green fluorescent protein. Technical Tips Online, 1997, 2, 104-106.	0.2	2
89	Assay for gene expression using run-on transcription in isolated nuclei. , 1994, , 245-255.		1
90	Chromosomal localization of parsley 4-coumarate: CoA ligase genes by in situ hybridization with a complementary DNA. Plant Cell Reports, 1989, 8, 59-62.	5.6	0

#	Article	IF	CITATIONS
91	Ultra-fast alkaline lysis plasmid extraction (UFX). Technical Tips Online, 1997, 2, 151-152.	0.2	0
92	Analysis of PR Gene derived Pathogen-Inducible synthetic Promoters in the Crop Sugar Beet. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2006, 1, 116-116.	1.4	0
93	Networks of Transcriptional Regulation Underlying Plant Defense Responses Toward Phytopathogens. , 0, , 266-284.		Ο