Sherif Araby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/864878/publications.pdf

Version: 2024-02-01

60 2,859 29 52 papers citations h-index g-index

60 60 60 2841 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multifunctional, flexible and mechanically resilient porous polyurea/graphene composite film. Journal of Industrial and Engineering Chemistry, 2022, 105, 549-562.	5.8	4
2	A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science, 2022, 4, 185-204.	8.8	35
3	Effect of graphene on the mechanical and electrochemical properties of GLARE. Journal of Adhesion Science and Technology, 2022, 36, 2159-2175.	2.6	1
4	Investigation on graphene addition on the quasi-static and dynamic responses of carbon fibre-reinforced metal laminates. Thin-Walled Structures, 2022, 174, 109092.	5. 3	11
5	Thermoelectric generator based on anisotropic wood aerogel for low-grade heat energy harvesting. Journal of Materials Science and Technology, 2022, 120, 150-158.	10.7	14
6	Porous polyvinyl alcohol/graphene oxide composite film for strain sensing and energy-storage applications. Nanotechnology, 2022, 33, 415701.	2.6	6
7	Effect of carbon black loading on mechanical and rheological properties of natural rubber/styrene-butadiene rubber/nitrile butadiene rubber blends. Journal of Thermoplastic Composite Materials, 2021, 34, 490-507.	4.2	42
8	Graphene/nanorubber reinforced electrically conductive epoxy composites with enhanced toughness. Journal of Applied Polymer Science, 2021, 138, 50163.	2.6	7
9	A comparative study on mechanical and rheological properties of ternary rubber blends. Polymers and Polymer Composites, 2021, 29, 15-28.	1.9	14
10	Accurate selfâ€damage detection by electrically conductive epoxy/graphene nanocomposite film. Journal of Applied Polymer Science, 2021, 138, 50452.	2.6	9
11	Stretchable, mechanically resilient, and high electromagnetic shielding polymer/ <scp>MXene</scp> nanocomposites. Journal of Applied Polymer Science, 2021, 138, 50509.	2.6	23
12	Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Composites Part B: Engineering, 2021, 212, 108675.	12.0	110
13	Thermal conductivity and mechanical performance of hexagonal boron nitride nanosheets-based epoxy adhesives. Nanotechnology, 2021, 32, 355707.	2.6	10
14	Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites. Composites Science and Technology, 2021, 214, 108997.	7.8	37
15	Non-oxidized graphene/metal composites by laser deposition additive manufacturing. Journal of Alloys and Compounds, 2021, 882, 160724.	5.5	11
16	Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite. Nanotechnology, 2020, 31, 075702.	2.6	64
17	Epoxy/graphene film for lifecycle self-sensing and multifunctional applications. Composites Science and Technology, 2020, 198, 108312.	7.8	49
18	Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology, 2020, 31, 315715.	2.6	31

#	Article	IF	Citations
19	Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chemical Engineering Journal, 2020, 397, 125439.	12.7	61
20	Mechanical, toughness and thermal properties of 2D material-reinforced epoxy composites. Polymer, 2019, 184, 121884.	3.8	77
21	A facile approach to fabricate highly sensitive, flexible strain sensor based on elastomeric/graphene platelet composite film. Journal of Materials Science, 2019, 54, 10856-10870.	3.7	50
22	Graphene platelets versus phosphorus compounds for elastomeric composites: flame retardancy, mechanical performance and mechanisms. Nanotechnology, 2019, 30, 385703.	2.6	30
23	Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives. Journal of Applied Polymer Science, 2019, 136, 48056.	2.6	56
24	Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives. Journal of Adhesion Science and Technology, 2019, 33, 1337-1356.	2.6	45
25	Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis. Composites Part A: Applied Science and Manufacturing, 2019, 120, 116-126.	7.6	135
26	High-mass loading electrodes with exceptional areal capacitance and cycling performance through a hierarchical network of MnO2 nanoflakes and conducting polymer gel. Journal of Power Sources, 2019, 412, 655-663.	7.8	27
27	Development of flame-retarding elastomeric composites with high mechanical performance. Composites Part A: Applied Science and Manufacturing, 2018, 109, 257-266.	7.6	26
28	Filling natural microtubules with triphenyl phosphate for flame-retarding polymer composites. Composites Part A: Applied Science and Manufacturing, 2018, 115, 247-254.	7.6	25
29	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705.	14.9	183
30	Design and development of small capacity vertical axis wind turbine. , 2018, , .		0
31	Constitutive modelling of elastomer/graphene platelet nanocomposites. IOP Conference Series: Materials Science and Engineering, 2017, 244, 012016.	0.6	5
32	Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor. Composites Science and Technology, 2017, 152, 181-189.	7.8	49
33	Graphene for flame-retarding elastomeric composite foams having strong interface. Composites Part A: Applied Science and Manufacturing, 2017, 101, 254-264.	7.6	33
34	Free-standing, flexible, electrically conductive epoxy/graphene composite films. Composites Part A: Applied Science and Manufacturing, 2017, 92, 42-50.	7.6	74
35	Grooves into cylindrical shapes by wire electrochemical machining. International Journal of Advanced Manufacturing Technology, 2017, 90, 445-455.	3.0	8
36	Effect of sample size on the performance of Shewhart control charts. International Journal of Advanced Manufacturing Technology, 2017, 90, 1177-1185.	3.0	22

#	Article	IF	CITATIONS
37	Aerogels based on carbon nanomaterials. Journal of Materials Science, 2016, 51, 9157-9189.	3.7	82
38	Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Composites Science and Technology, 2016, 127, 119-126.	7.8	99
39	Influence of Interface on epoxy/clay Nanocomposites: 2. Mechanical and Thermal Dynamic Properties. Procedia Manufacturing, 2015, 2, 23-27.	1.9	16
40	Influence of Interface on epoxy/clay Nanocomposites: 1. Morphology Structure. Procedia Manufacturing, 2015, 2, 17-22.	1.9	12
41	Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26, 112001.	2.6	119
42	Implication of multi-walled carbon nanotubes on polymer/graphene composites. Materials & Design, 2015, 65, 690-699.	5.1	99
43	Vibration Attenuation of Plate Using Multiple Vibration Absorbers. MATEC Web of Conferences, 2014, 13, 03003.	0.2	8
44	The Application of Multiple Vibration Neutralizers for Vibration Control in Aircraft. Applied Mechanics and Materials, 2014, 629, 191-196.	0.2	7
45	Toughening polymer adhesives using nanosized elastomeric particles. Journal of Materials Research, 2014, 29, 665-674.	2.6	29
46	Superior piezoelectric composite films: taking advantage of carbon nanomaterials. Nanotechnology, 2014, 25, 045501.	2.6	13
47	From clay to graphene for polymer nanocomposites—a survey. Journal of Polymer Research, 2014, 21, 1.	2.4	52
48	Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer, 2014, 55, 201-210.	3.8	239
49	Effect of interface modification on PMMA/graphene nanocomposites. Journal of Materials Science, 2014, 49, 5838-5849.	3.7	28
50	Interface modification of clay and graphene platelets reinforced epoxy nanocomposites: a comparative study. Journal of Materials Science, 2014, 49, 5856-5865.	3.7	35
51	A novel approach to electrically and thermally conductive elastomers using graphene. Polymer, 2013, 54, 3663-3670.	3.8	124
52	Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology, 2013, 24, 165601.	2.6	124
53	The effects of bolted joints on dynamic response of structures. IOP Conference Series: Materials Science and Engineering, 2013, 50, 012018.	0.6	20
54	Vibration Characteristics of Composite Plate Embedded with Shape Memory Alloy at Elevated Temperature. Applied Mechanics and Materials, 2013, 393, 655-660.	0.2	9

#	Article	IF	CITATIONS
55	A facile approach to fabricate elastomer/graphene platelets nanocomposites. , 2013, , .		1
56	A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Advanced Functional Materials, 2012, 22, 2735-2743.	14.9	244
57	Study on the wire electrochemical groove turning process. Journal of Applied Electrochemistry, 2011, 41, 161-171.	2.9	22
58	Performance analysis of wire electrochemical turning processâ€"RSM approach. International Journal of Advanced Manufacturing Technology, 2011, 53, 181-190.	3.0	52
59	An integrated framework of statistical process control and design of experiments for optimizing wire electrochemical turning process. International Journal of Advanced Manufacturing Technology, 2011, 53, 191-207.	3.0	31
60	Study of Passive Vibration Absorbers Attached on Beam Structure. Applied Mechanics and Materials, 0, 660, 511-515.	0.2	10