
Göran Birgersson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8647677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fear effects on bank voles (<scp>Rodentia: Arvicolinae</scp>): testing for repellent candidates from predator volatiles. Pest Management Science, 2022, 78, 1677-1685.	3.4	4
2	Do plant ploidy and pollinator tongue length interact to cause low seed yield in red clover?. Ecosphere, 2021, 12, e03416.	2.2	4
3	Towards streamlined bank vole odor preference evaluation using Y-mazes. Mammal Research, 2020, 65, 1-9.	1.3	2
4	Plasmodium falciparum gametocyte-induced volatiles enhance attraction of Anopheles mosquitoes in the field. Malaria Journal, 2020, 19, 327.	2.3	9
5	Characterization of olfactory sensory neurons in the red clover seed weevil, Protapion trifolii (Coleoptera: Brentidae) and comparison to the closely related species P. fulvipes. Journal of Insect Physiology, 2019, 119, 103948.	2.0	5
6	Styrene, (+)-trans-(1R,4S,5S)-4-Thujanol and Oxygenated Monoterpenes Related to Host Stress Elicit Strong Electrophysiological Responses in the Bark Beetle Ips typographus. Journal of Chemical Ecology, 2019, 45, 474-489.	1.8	36
7	Using synthetic semiochemicals to train canines to detect bark beetle–infested trees. Annals of Forest Science, 2019, 76, 1.	2.0	12
8	Impact on Wastewater Quality of Biopellets Composed of <i>Chlorella vulgaris</i> and <i>Aspergillus niger</i> and Lipid Content in the Harvested Biomass. Journal of Water Resource and Protection, 2019, 11, 831-843.	0.8	4
9	Sweet attraction: sugarcane pollen-associated volatiles attract gravid Anopheles arabiensis. Malaria Journal, 2018, 17, 90.	2.3	43
10	Ecological and Phylogenetic Relationships Shape the Peripheral Olfactory Systems of Highly Specialized Gall Midges (Cecidomiiydae). Frontiers in Physiology, 2018, 9, 323.	2.8	9
11	A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science, 2017, 355, 1076-1080.	12.6	87
12	The role of pollinators, pests and different yield components for organic and conventional white clover seed yields. Field Crops Research, 2017, 210, 1-8.	5.1	13
13	Use of the effluent from biogas production for cultivation of Spirulina. Bioprocess and Biosystems Engineering, 2017, 40, 625-631.	3.4	29
14	Host-plant location by the Guatemalan potato moth Tecia solanivora is assisted by floral volatiles. Chemoecology, 2017, 27, 187-198.	1.1	7
15	Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough. Journal of Chemical Ecology, 2017, 43, 794-805.	1.8	24
16	A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours. Malaria Journal, 2017, 16, 39.	2.3	43
17	A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biology, 2017, 15, 88.	3.8	74
18	Detection and perception of generic host volatiles by mosquitoes modulate host preference: context dependence of (<i>R</i>)-1-octen-3-ol. Royal Society Open Science, 2016, 3, 160467.	2.4	43

Göran Birgersson

#	Article	IF	CITATIONS
19	Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Scientific Reports, 2016, 6, 37930.	3.3	66
20	Domestication influences choice behavior and performance of a generalist herbivore. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 23, 63-72.	2.7	6
21	Chicken volatiles repel host-seeking malaria mosquitoes. Malaria Journal, 2016, 15, 354.	2.3	40
22	Microalgal growth in municipal wastewater treated in an anaerobic moving bed biofilm reactor. Bioresource Technology, 2016, 207, 19-23.	9.6	17
23	Identification of Cattle-Derived Volatiles that Modulate the Behavioral Response of the Biting Midge Culicoides nubeculosus. Journal of Chemical Ecology, 2016, 42, 24-32.	1.8	18
24	Field Abundance Patterns and Odor-Mediated Host Choice by Clover Seed Weevils, Apion fulvipes and Apion trifolii (Coleoptera: Apionidae). Journal of Economic Entomology, 2015, 108, 492-503.	1.8	6
25	Concurrent modulation of neuronal and behavioural olfactory responses to sex and host plant cues in a male moth. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141884.	2.6	35
26	Identification of Plant Semiochemicals and Characterization of New Olfactory Sensory Neuron Types in a Polyphagous Pest Moth, Spodoptera littoralis. Chemical Senses, 2014, 39, 719-733.	2.0	19
27	Aggregation pheromones of bark beetles, Pityogenes quadridens and P. bidentatus, colonizing Scotch pine: olfactory avoidance of interspecific mating and competition. Chemoecology, 2013, 23, 251-261.	1.1	18
28	Modulation of Reproductive Behaviors by Non-Host Volatiles in the Polyphagous Egyptian Cotton Leafworm, Spodoptera littoralis. Journal of Chemical Ecology, 2013, 39, 1273-1283.	1.8	23
29	Guatemalan potato moth Tecia solanivora distinguish odour profiles from qualitatively different potatoes Solanum tuberosum L Phytochemistry, 2013, 85, 72-81.	2.9	12
30	Floral to green: mating switches moth olfactory coding and preference. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2314-2322.	2.6	137
31	Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia, 2012, 170, 183-198.	2.0	120
32	Characterization of olfactory sensory neurons in the white clover seed weevil, Apion fulvipes (Coleoptera: Apionidae). Journal of Insect Physiology, 2012, 58, 1325-1333.	2.0	22
33	Attraction and Oviposition of Tuta absoluta Females in Response to Tomato Leaf Volatiles. Journal of Chemical Ecology, 2011, 37, 565-574.	1.8	110
34	Pheromone of the elm bark beetle Scolytus laevis (Coleoptera: Scolytidae): stereoisomers of 4-methyl-3-heptanol reduce interspecific competition. Chemoecology, 2010, 20, 179-187.	1.1	5
35	A retrospective analysis of contamination and periphyton PICT patterns for the antifoulant irgarol 1051, around a small marina on the Swedish west coast. Marine Pollution Bulletin, 2009, 58, 230-237.	5.0	39
36	Plant Odor Analysis of Potato: Response of Guatemalan Moth to Above- and Belowground Potato Volatiles. Journal of Agricultural and Food Chemistry, 2009, 57, 5903-5909.	5.2	47

#	Article	IF	CITATIONS
37	TNT leakage through sediment to water and toxicity to Nitocra spinipes. Ecotoxicology and Environmental Safety, 2007, 67, 341-348.	6.0	14
38	Electrophysiological and Behavioral Responses of Ips duplicatus to Aggregation Pheromone in Inner Mongolia, China: Amitinol as a Potential Pheromone Component. Journal of Chemical Ecology, 2007, 33, 1303-1315.	1.8	19
39	Fate and Effects of 2,4,6-Trinitrotoluene (TNT) from Dumped Ammunition in a Field Study with Fish and Invertebrates. Archives of Environmental Contamination and Toxicology, 2006, 51, 244-252.	4.1	21
40	Tentative biomarkers for 2,4,6-trinitrotoluene (TNT) in fish (Oncorhynchus mykiss). Aquatic Toxicology, 2005, 72, 221-230.	4.0	35
41	Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus , in a forest of odors. Die Naturwissenschaften, 2004, 91, 215-219.	1.6	50
42	Acute Effects Of 2,4,6-Trinitrotoluene (TNT) on Haematology Parameters and Hepatic EROD-Activity in Rainbow Trout (Oncorhynchus mykiss). Aquatic Ecosystem Health and Management, 2003, 6, 415-421.	0.6	18
43	Synthetic attractants for the bark beetle parasitoid Coeloides bostrichorum Giraud (Hymenoptera:) Tj ETQq1 1 0	.784314 ı 1.6	gBT_/Overloci
44	A model for peak and width of signaling windows: Ips duplicatus and Chilo partellus pheromone component proportionsdoes response have a wider window than production?. Journal of Chemical Ecology, 2001, 27, 1481-1511.	1.8	20
45	Olfactory responses of Ips duplicatus from inner Mongolia, China to nonhost leaf and bark volatiles. Journal of Chemical Ecology, 2001, 27, 995-1009.	1.8	57
46	Title is missing!. Journal of Chemical Ecology, 2000, 26, 841-858.	1.8	38
47	Strategies of a bark beetle, Pityogenes bidentatus , in an olfactory landscape. Die Naturwissenschaften, 2000, 87, 503-507.	1.6	68
48	Bark volatiles from nonhost angiosperm trees of spruce bark beetle, Ips typographus (L.) (Coleoptera:) Tj ETQq0	0 0 rgBT / 1.1	Overlock 101
49	ELECTROPHYSIOLOGICAL AND BEHAVIOURAL RESPONSES OF <i>TOMICUS PINIPERDA</i> AND <i>TOMICUS MINOR</i> (COLEOPTERA: SCOLYTIDAE) TO NON-HOST LEAF AND BARK VOLATILES. Canadian Entomologist, 2000, 132, 965-981.	0.8	50
50	Title is missing!. Journal of Chemical Ecology, 1999, 25, 1923-1943.	1.8	88
51	Volatiles from Nonhost Birch Trees Inhibit Pheromone Response in Spruce Bark Beetles. Die Naturwissenschaften, 1998, 85, 557-561.	1.6	104
52	Pheromones in white pine cone beetle,Conophthorus coniperda (schwarz) (Coleoptera: Scolytidae). Journal of Chemical Ecology, 1995, 21, 143-167.	1.8	61
53	Regulation and biosynthesis of pheromone components in the double spined bark beetle Ips duplicatus (Coleoptera: Scolytidae). Journal of Insect Physiology, 1995, 41, 843-849.	2.0	38
54	Monoterpene emissions and cuticular lipids of loblolly and slash pines: potential bases for oviposition preference of the Nantucket pine tip moth. Canadian Journal of Botany, 1995, 73, 21-25.	1.1	10

Göran Birgersson

#	Article	IF	CITATIONS
55	Demonstration of de Novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of Ipsdienol and E-Myrcenol production by compactin. Insect Biochemistry and Molecular Biology, 1993, 23, 655-662.	2.7	60
56	Floral fragrance disparity between three taxa of lady's slipper cypripedium calceolus (orchidaceae). Phytochemistry, 1992, 31, 2315-2319.	2.9	55
57	Production of pheromone components, chalcogran and methyl (E,Z)-2,4-decadienoate, in the spruce engraver Pityogenes chalcographus. Journal of Insect Physiology, 1990, 36, 391-395.	2.0	33
58	Inhibition of attraction to aggregation pheromone by verbenone and ipsenol. Journal of Chemical Ecology, 1989, 15, 2263-2277.	1.8	75
59	Variation of enantiomeric composition of ?-pinene in norway spruce,Picea abies, and its influence on production of verbenol isomers bylps typographus in the field. Journal of Chemical Ecology, 1989, 15, 541-548.	1.8	64
60	Structure-activity studies on aggregation pheromone components ofPityogenes chalcographus (Coleoptera: Scolytidae). Journal of Chemical Ecology, 1989, 15, 685-695.	1.8	35
61	Volatiles released from individual spruce bark beetle entrance holes Quantitative variations during the first week of attack. Journal of Chemical Ecology, 1989, 15, 2465-2483.	1.8	81
62	Individual variation in bark beetle and moth pheromones - a comparison and an evolutionary background. Ecography, 1989, 12, 457-465.	4.5	11
63	Host tree resistance influencing pheromone production in Ips typographus (Coleoptera: Scolytidae). Ecography, 1989, 12, 451-456.	4.5	9
64	The influence of host tree response to Ips typographus and fungal attack on production of semiochemicals. Insect Biochemistry, 1988, 18, 761-770.	1.8	33
65	Field response of spruce bark beetle,Ips typographus, to aggregation pheromone candidates. Journal of Chemical Ecology, 1987, 13, 701-716.	1.8	109