Giorgio Carmignoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8647585/publications.pdf

Version: 2024-02-01

83 papers 13,401 citations

46984 47 h-index 80 g-index

84 all docs 84 docs citations

84 times ranked 10392 citing authors

#	Article	IF	CITATIONS
1	Astrocytes Modulate Somatostatin Interneuron Signaling in the Visual Cortex. Cells, 2022, 11, 1400.	1.8	5
2	Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Molecular Psychiatry, 2022, 27, 4201-4217.	4.1	2
3	Calcium Signals in Astrocyte Microdomains, a Decade of Great Advances. Frontiers in Cellular Neuroscience, 2021, 15, 673433.	1.8	48
4	P.116 Interneuron-astrocyte interactions in neurovascular coupling. European Neuropsychopharmacology, 2020, 31, S12.	0.3	0
5	Dynamic interactions between GABAergic and astrocytic networks. Neuroscience Letters, 2019, 689, 14-20.	1.0	10
6	Optogenetic Interneuron Stimulation and Calcium Imaging in Astrocytes. Methods in Molecular Biology, 2019, 1925, 173-182.	0.4	2
7	mCerulean3-Based Cameleon Sensor to Explore Mitochondrial Ca2+ Dynamics InÂVivo. IScience, 2019, 16, 340-355.	1.9	15
8	Cellular and molecular mechanisms of new onset seizure generation. Aging Clinical and Experimental Research, 2019, 33, 1713-1716.	1.4	5
9	Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nature Communications, 2018, 9, 82.	5.8	88
10	mGlu1 Receptors Monopolize the Synaptic Control of Cerebellar Purkinje Cells by Epigenetically Down-Regulating mGlu5 Receptors. Scientific Reports, 2018, 8, 13361.	1.6	6
11	Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptorâ€mediated slow depolarizing inward currents. Glia, 2018, 66, 2188-2199.	2.5	22
12	Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices. Journal of Neuroscience, 2017, 37, 10398-10407.	1.7	52
13	New Tools to Study Astrocyte Ca2+ Signal Dynamics in Brain Networks In Vivo. Frontiers in Cellular Neuroscience, 2017, 11, 134.	1.8	30
14	Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein. ACS Chemical Biology, 2016, 11, 1652-1660.	1.6	28
15	The inhibitory neurotransmitter <scp>GABA</scp> evokes longâ€lasting <scp>C</scp> a ²⁺ oscillations in cortical astrocytes. Glia, 2016, 64, 363-373.	2.5	96
16	Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience, 2016, 323, 157-169.	1.1	91
17	Unaltered Network Activity and Interneuronal Firing During Spontaneous Cortical Dynamics In Vivo in a Mouse Model of Severe Myoclonic Epilepsy of Infancy. Cerebral Cortex, 2016, 26, 1778-1794.	1.6	62
18	A brain slice experimental model to study the generation and the propagation of focally-induced epileptiform activity. Journal of Neuroscience Methods, 2016, 260, 125-131.	1.3	20

#	Article	IF	CITATIONS
19	Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity. Journal of Neuroscience, 2015, 35, 9544-9557.	1.7	123
20	Novel astrocyte targets. Neuroscientist, 2015, 21, 62-83.	2.6	46
21	The inflammatory molecules IL- $1\tilde{A}\check{Z}\hat{A}^2$ and HMGB1 can rapidly enhance focal seizure generation in a brain slice model of temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 2014, 8, 155.	1.8	49
22	Gliotransmitters Travel in Time and Space. Neuron, 2014, 81, 728-739.	3.8	1,010
23	GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130609.	1.8	50
24	New vistas on astroglia in convulsive and nonâ€convulsive epilepsy highlight novel astrocytic targets for treatment. Journal of Physiology, 2013, 591, 775-785.	1.3	24
25	Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. Journal of Physiology, 2013, 591, 807-822.	1.3	147
26	Astroglial Excitability and Gliotransmission: An Appraisal of Ca ²⁺ as a Signalling Route. ASN Neuro, 2012, 4, AN20110061.	1.5	240
27	The Role of Astroglia in the Epileptic Brain. Frontiers in Pharmacology, 2012, 3, 132.	1.6	41
28	Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers in Computational Neuroscience, 2012, 6, 81.	1.2	38
29	Astrocyte calcium signaling and epilepsy. Glia, 2012, 60, 1227-1233.	2.5	117
30	Ictal but Not Interictal Epileptic Discharges Activate Astrocyte Endfeet and Elicit Cerebral Arteriole Responses. Frontiers in Cellular Neuroscience, 2011, 5, 8.	1.8	20
31	Astrocyte dysfunction in epilepsy. Brain Research Reviews, 2010, 63, 212-221.	9.1	228
32	The contribution of astrocyte signalling to neurovascular coupling. Brain Research Reviews, 2010, 63, 138-148.	9.1	145
33	A new experimental model of focal seizures in the entorhinal cortex. Epilepsia, 2010, 51, 1493-1502.	2.6	26
34	Glutamateâ€mediated astrocyteâ€toâ€neuron signalling in the rat dorsal horn. Journal of Physiology, 2010, 588, 831-846.	1.3	73
35	Bothrops snake myotoxins induce a large efflux of ATP and potassium with spreading of cell damage and pain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14140-14145.	3.3	66
36	An Excitatory Loop with Astrocytes Contributes to Drive Neurons to Seizure Threshold. PLoS Biology, 2010, 8, e1000352.	2.6	194

#	Article	lF	Citations
37	Physiological and Pathological Roles of Astrocyte-mediated Neuronal Synchrony. , 2009, , 513-525.		O
38	Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord. Developmental Neurobiology, 2008, 68, 457-475.	1.5	56
39	Calpain activity contributes to the control of SNAP-25 levels in neurons. Molecular and Cellular Neurosciences, 2008, 39, 314-323.	1.0	18
40	Enhanced Astrocytic Ca ²⁺ Signals Contribute to Neuronal Excitotoxicity after Status Epilepticus. Journal of Neuroscience, 2007, 27, 10674-10684.	1.7	248
41	Purinergic Receptors Mediate Two Distinct Glutamate Release Pathways in Hippocampal Astrocytes. Journal of Biological Chemistry, 2006, 281, 4274-4284.	1.6	141
42	Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. Journal of Physiology, 2006, 570, 567-582.	1.3	116
43	Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus. Journal of Physiology (Paris), 2006, 99, 98-102.	2.1	68
44	Astrocyte Control of Synaptic Transmission and Neurovascular Coupling. Physiological Reviews, 2006, 86, 1009-1031.	13.1	1,145
45	Astrocytic Glutamate Is Not Necessary for the Generation of Epileptiform Neuronal Activity in Hippocampal Slices. Journal of Neuroscience, 2006, 26, 9312-9322.	1.7	153
46	Neurone-to-astrocyte signalling in the brain represents a distinct multifunctional unit. Journal of Physiology, 2004, 559, 3-15.	1.3	221
47	Neuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors. Neuron, 2004, 43, 729-743.	3.8	843
48	Primary cultures from fetal bovine brain. NeuroReport, 2004, 15, 1719-1722.	0.6	15
49	Neurotrophins in spinal cord nociceptive pathways. Progress in Brain Research, 2004, 146, 291-321.	0.9	57
50	Paradoxical Ca 2+ Rises induced by Low External Ca 2+ in Rat Hippocampal Neurones. Journal of Physiology, 2003, 549, 537-552.	1.3	15
51	Glutamateâ€mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. Journal of Physiology, 2003, 553, 407-414.	1.3	159
52	Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neuroscience, 2003, 6, 43-50.	7.1	1,296
53	Response: Astrocyte-mediated control of cerebral microcirculation. Trends in Neurosciences, 2003, 26, 344-345.	4.2	31
54	Calcium oscillations encoding neuron-to-astrocyte communication. Journal of Physiology (Paris), 2002, 96, 193-198.	2.1	47

#	Article	IF	Citations
55	Dynamic Signaling Between Astrocytes and Neurons. Annual Review of Physiology, 2001, 63, 795-813.	5.6	549
56	Cytosolic Calcium Oscillations in Astrocytes May Regulate Exocytotic Release of Glutamate. Journal of Neuroscience, 2001, 21, 477-484.	1.7	264
57	Astrocyte–neurone crosstalk: variants of the same language?. Trends in Pharmacological Sciences, 2000, 21, 373-374.	4.0	11
58	Reciprocal communication systems between astrocytes and neurones. Progress in Neurobiology, 2000, 62, 561-581.	2.8	208
59	Cellular calcium handling in brain slices from calbindin D28k-deficient mice. NeuroReport, 1999, 10, 2367-2372.	0.6	14
60	Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature, 1998, 391, 281-285.	13.7	1,071
61	On the Role of Voltage-Dependent Calcium Channels in Calcium Signaling of AstrocytesIn Situ. Journal of Neuroscience, 1998, 18, 4637-4645.	1.7	150
62	Nitric Oxide-Producing Islet Cells Modulate the Release of Sensory Neuropeptides in the Rat Substantia Gelatinosa. Journal of Neuroscience, 1998, 18, 10375-10388.	1.7	58
63	Brainâ€derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex Journal of Physiology, 1997, 498, 153-164.	1.3	200
64	Intracellular Calcium Oscillations in Astrocytes: A Highly Plastic, Bidirectional Form of Communication between Neurons and Astrocytes (i>In Situ (i>). Journal of Neuroscience, 1997, 17, 7817-7830.	1.7	690
65	Long-lasting Changes of Calcium Oscillations in Astrocytes. Journal of Biological Chemistry, 1995, 270, 15203-15210.	1.6	97
66	Developing Rat Retinal Ganglion Cells Express the Functional NGF Receptor p140trkA. Developmental Biology, 1993, 159, 105-113.	0.9	36
67	Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex Journal of Physiology, 1993, 464, 343-360.	1.3	102
68	N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina. Visual Neuroscience, 1992, 8, 567-573.	0.5	274
69	Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science, 1992, 258, 1007-1011.	6.0	674
70	Distribution of protein gene product 9.5 (PGP 9.5) in the vertebrate retina: Evidence that immunoreactivity is restricted to mammalian horizontal and ganglion cells. Journal of Comparative Neurology, 1992, 322, 35-44.	0.9	46
71	Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina. Experimental Neurology, 1991, 111, 302-311.	2.0	103
72	Nerve growth factor prevents the amblyopic effects of monocular deprivation Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8811-8815.	3.3	107

#	Article	lF	CITATIONS
73	Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1855-1859.	3.3	74
74	Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. Journal of Neuroscience, 1989, 9, 1263-1272.	1.7	238
75	Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Investigative Ophthalmology and Visual Science, 1988, 29, 558-65.	3.3	47
76	Monocular deprivation in kittens differently affects crossed and uncrossed visual pathways. Vision Research, 1986, 26, 875-884.	0.7	18
77	Spatialâ€frequency characteristics of neurones of area 18 in the cat: dependence on the velocity of the visual stimulus Journal of Physiology, 1985, 359, 259-268.	1.3	64
78	Can functional reorganization of area 17 following monocular deprivation be modified by GM1 internal ester treatment?. Journal of Neuroscience Research, 1984, 12, 477-483.	1.3	7
79	Pharmacological Aspects of Experimental Peripheral Neuropathy. , 1984, , 259-276.		2
80	Muscle reinnervation—I. Restoration of transmitter release mechanisms. Neuroscience, 1983, 8, 393-401.	1.1	53
81	Muscle reinnervation—II. Sprouting, synapse formation and repression. Neuroscience, 1983, 8, 403-IN1.	1.1	164
82	Electrophysiological and Morphological Correlates of the Re-Innervation of Rat Neuromuscular Junction: Implications on the Role of Membrane Components such as Gangliosides in the Motor Nerve Sprouting. Advances in Behavioral Biology, 1981, , 221-233.	0.2	1
83	Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth. Brain Research, 1980, 197, 236-241.	1.1	230