
## Kevin Booth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8646472/publications.pdf Version: 2024-02-01



KEVIN ROOTH

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Human<br>Genetics, 2016, 135, 441-450.                                                                                    | 3.8 | 373       |
| 2  | Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss.<br>Human Mutation, 2018, 39, 1593-1613.                                                                               | 2.5 | 312       |
| 3  | Genomic Landscape and Mutational Signatures of Deafness-Associated Genes. American Journal of<br>Human Genetics, 2018, 103, 484-497.                                                                                   | 6.2 | 214       |
| 4  | Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic<br>Deafness Variants. American Journal of Human Genetics, 2014, 95, 445-453.                                       | 6.2 | 137       |
| 5  | An international effort towards developing standards for best practices in analysis, interpretation<br>and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology, 2014,<br>15, R53. | 9.6 | 101       |
| 6  | Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. Journal of Medical Genetics, 2015, 52, 823-829.                                                                                    | 3.2 | 87        |
| 7  | <i>TBC1D24</i> Mutation Causes Autosomal-Dominant Nonsyndromic Hearing Loss. Human Mutation, 2014, 35, 819-823.                                                                                                        | 2.5 | 78        |
| 8  | ClinGen expert clinical validity curation of 164 hearing loss gene–disease pairs. Genetics in Medicine,<br>2019, 21, 2239-2247.                                                                                        | 2.4 | 67        |
| 9  | CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival.<br>EMBO Molecular Medicine, 2017, 9, 1711-1731.                                                                  | 6.9 | 66        |
| 10 | <i>PDZD7</i> and hearing loss: More than just a modifier. American Journal of Medical Genetics, Part<br>A, 2015, 167, 2957-2965.                                                                                       | 1.2 | 54        |
| 11 | HOMER2, a Stereociliary Scaffolding Protein, Is Essential for Normal Hearing in Humans and Mice.<br>PLoS Genetics, 2015, 11, e1005137.                                                                                 | 3.5 | 52        |
| 12 | Defective Tmprss3-Associated Hair Cell Degeneration in Inner Ear Organoids. Stem Cell Reports, 2019,<br>13, 147-162.                                                                                                   | 4.8 | 52        |
| 13 | CDC14A phosphatase is essential for hearing and male fertility in mouse and human. Human Molecular<br>Genetics, 2018, 27, 780-798.                                                                                     | 2.9 | 49        |
| 14 | Old gene, new phenotype: splice-altering variants in <i>CEACAM16</i> cause recessive non-syndromic hearing impairment. Journal of Medical Genetics, 2018, 55, 555-560.                                                 | 3.2 | 48        |
| 15 | Variants in <i>CIB2</i> cause DFNB48 and not USH1J. Clinical Genetics, 2018, 93, 812-821.                                                                                                                              | 2.0 | 46        |
| 16 | Exonic mutations and exon skipping: Lessons learned from <i>DFNA5</i> . Human Mutation, 2018, 39, 433-440.                                                                                                             | 2.5 | 44        |
| 17 | Splice-altering variant in COL11A1 as a cause of nonsyndromic hearing loss DFNA37. Genetics in Medicine, 2019, 21, 948-954.                                                                                            | 2.4 | 36        |
| 18 | Targeted genomic enrichment and massively parallel sequencing identifies novel nonsyndromic<br>hearing impairment pathogenic variants in Cameroonian families. Clinical Genetics, 2016, 90, 288-290.                   | 2.0 | 35        |

Κενιν Βοοτη

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comprehensive genetic testing with ethnicâ€specific filtering by allele frequency in a Japanese<br>hearingâ€loss population. Clinical Genetics, 2016, 89, 466-472.                                                                            | 2.0 | 31        |
| 20 | Detection and Confirmation of Deafness-Causing Copy Number Variations in the <i>STRC</i> Gene by<br>Massively Parallel Sequencing and Comparative Genomic Hybridization. Annals of Otology, Rhinology<br>and Laryngology, 2016, 125, 918-923. | 1.1 | 28        |
| 21 | Biomarker pattern of ARIA-E participants in phase 3 randomized clinical trials with bapineuzumab.<br>Neurology, 2018, 90, e877-e886.                                                                                                          | 1.1 | 28        |
| 22 | Mutations in <i>LOXHD1</i> Gene Cause Various Types and Severities of Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 135S-141S.                                                                                       | 1.1 | 24        |
| 23 | De Novo Mutation in X-Linked Hearing Loss–Associated POU3F4 in a Sporadic Case of Congenital<br>Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 169S-176S.                                                             | 1.1 | 19        |
| 24 | Novel <i>PTPRQ</i> Mutations Identified in Three Congenital Hearing Loss Patients With Various Types of Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 184S-192S.                                                     | 1.1 | 19        |
| 25 | Disease-specific ACMG/AMP guidelines improve sequence variant interpretation for hearing loss.<br>Genetics in Medicine, 2021, 23, 2208-2212.                                                                                                  | 2.4 | 18        |
| 26 | Heterogeneity of Hereditary Hearing Loss in Iran: a Comprehensive Review. Archives of Iranian<br>Medicine, 2016, 19, 720-728.                                                                                                                 | 0.6 | 18        |
| 27 | Hearing Loss Caused by a <i>P2RX2</i> Mutation Identified in a MELAS Family With a Coexisting<br>Mitochondrial 3243AG Mutation. Annals of Otology, Rhinology and Laryngology, 2015, 124, 177S-183S.                                           | 1.1 | 17        |
| 28 | Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and<br>Perspective. Frontiers in Genetics, 2018, 9, 156.                                                                                       | 2.3 | 17        |
| 29 | A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans. Human Genetics, 2021, 140, 915-931.                                                                                                                                 | 3.8 | 16        |
| 30 | Insights into the pathophysiology of DFNA10 hearing loss associated with novel EYA4 variants.<br>Scientific Reports, 2020, 10, 6213.                                                                                                          | 3.3 | 15        |
| 31 | Novel loss-of-function mutations in COCH cause autosomal recessive nonsyndromic hearing loss.<br>Human Genetics, 2020, 139, 1565-1574.                                                                                                        | 3.8 | 13        |
| 32 | A comparative analysis of genetic hearing loss phenotypes in European/American and Japanese populations. Human Genetics, 2020, 139, 1315-1323.                                                                                                | 3.8 | 12        |
| 33 | USH2 Caused by <i>GPR98</i> Mutation Diagnosed by Massively Parallel Sequencing in Advance of the<br>Occurrence of Visual Symptoms. Annals of Otology, Rhinology and Laryngology, 2015, 124, 123S-128S.                                       | 1.1 | 9         |
| 34 | Audioprofile Surfaces. Annals of Otology, Rhinology and Laryngology, 2016, 125, 361-368.                                                                                                                                                      | 1.1 | 8         |
| 35 | DFNA5 (GSDME) c.991-15_991-13delTTC: Founder Mutation or Mutational Hotspot?. International Journal of Molecular Sciences, 2020, 21, 3951.                                                                                                    | 4.1 | 8         |
| 36 | A synonymous variant in MYO15A enriched in the Ashkenazi Jewish population causes autosomal<br>recessive hearing loss due to abnormal splicing. European Journal of Human Genetics, 2021, 29,<br>988-997.                                     | 2.8 | 8         |

Κένιν Βοότη

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | ls it Usher syndrome? Collaborative diagnosis and molecular genetics of patients with visual impairment and hearing loss. Ophthalmic Genetics, 2020, 41, 151-158.                    | 1.2 | 7         |
| 38 | Genetic etiology of hearing loss in Iran. Human Genetics, 2022, 141, 623-631.                                                                                                        | 3.8 | 6         |
| 39 | DVPred: a disease-specific prediction tool for variant pathogenicity classification for hearing loss.<br>Human Genetics, 2022, 141, 401-411.                                         | 3.8 | 6         |
| 40 | Exome sequencing utility in defining the genetic landscape of hearing loss and novelâ€gene discovery in<br>Iran. Clinical Genetics, 2021, 100, 59-78.                                | 2.0 | 4         |
| 41 | When transcripts matter: delineating between non-syndromic hearing loss DFNB32 and hearing impairment infertile male syndrome (HIIMS). Journal of Human Genetics, 2020, 65, 609-617. | 2.3 | 2         |
| 42 | Identification of Novel and Recurrent Variants in MYO15A in Ashkenazi Jewish Patients With Autosomal Recessive Nonsyndromic Hearing Loss. Frontiers in Genetics, 2021, 12, 737782.   | 2.3 | 1         |
| 43 | SEQuencing a baby for an optimal outcome: a genomic future for newborn screening. Molecular<br>Genetics and Metabolism, 2021, 132, S138.                                             | 1.1 | Ο         |
| 44 | Editorial to the Special Issue on "The molecular genetics of hearing and deafness― Human Genetics,<br>2022, 141, 305.                                                                | 3.8 | 0         |