
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8645770/publications.pdf Version: 2024-02-01

Тния І Н Унист

#	Article	IF	CITATIONS
1	State-of-the-Art of CO ₂ Capture with Ionic Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 8149-8177.	3.7	881
2	Quantum cutting by cooperative energy transfer inYbxY1â^'xPO4:Tb3+. Physical Review B, 2005, 71, .	3.2	537
3	Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite. Journal of Physical Chemistry B, 1999, 103, 1102-1118.	2.6	472
4	Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 12205-12250.	47.7	410
5	United Atom Force Field for Alkanes in Nanoporous Materials. Journal of Physical Chemistry B, 2004, 108, 12301-12313.	2.6	314
6	Understanding the Role of Sodium during Adsorption:Â A Force Field for Alkanes in Sodium-Exchanged Faujasites. Journal of the American Chemical Society, 2004, 126, 11377-11386.	13.7	255
7	Improving the efficiency of the configurational-bias Monte Carlo algorithm. Molecular Physics, 1998, 94, 727-733.	1.7	212
8	Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. Journal of Chemical Theory and Computation, 2008, 4, 1107-1118.	5.3	202
9	Transferable Force Field for Carbon Dioxide Adsorption in Zeolites. Journal of Physical Chemistry C, 2009, 113, 8814-8820.	3.1	199
10	Influence of Framework Flexibility on the Adsorption Properties of Hydrocarbons in the Zeolite Silicalite. Journal of Physical Chemistry B, 2002, 106, 12757-12763.	2.6	191
11	Downconversion for solar cells in <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>3.2</td><td>> 191</td></mml:math>	3.2	> 191
12	Physical Review B, 2010, 81, . Force Network Ensemble: A New Approach to Static Granular Matter. Physical Review Letters, 2004, 92, 054302.	7.8	183
13	Understanding Water Adsorption in Cuâ^'BTC Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2008, 112, 15934-15939.	3.1	178
14	Molecular Simulations of Interacting Nanocrystals. Nano Letters, 2008, 8, 2930-2934.	9.1	165
15	Adsorption of Linear and Branched Alkanes in the Zeolite Silicalite-1. Journal of the American Chemical Society, 1998, 120, 5599-5600.	13.7	163
16	Kirkwood–Buff Integrals for Finite Volumes. Journal of Physical Chemistry Letters, 2013, 4, 235-238.	4.6	163
17	Mechanical properties of clathrate hydrates: status and perspectives. Energy and Environmental Science, 2012, 5, 6779.	30.8	161
18	Force Field Parametrization through Fitting on Inflection Points in Isotherms. Physical Review Letters, 2004, 93, 088302.	7.8	144

#	Article	IF	CITATIONS
19	Molecular simulation of loading-dependent diffusion in nanoporous materials using extended dynamically corrected transition state theory. Journal of Chemical Physics, 2005, 122, 224712.	3.0	142
20	Adsorptive characterization of porous solids: Error analysis guides the way. Microporous and Mesoporous Materials, 2014, 200, 199-215.	4.4	134
21	The Shape Selectivity of Paraffin Hydroconversion on TON-, MTT-, and AEL-Type Sieves. Journal of Catalysis, 1999, 188, 403-412.	6.2	132
22	Adsorption and Binding of Ligands to CdSe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 12690-12698.	3.1	127
23	Metal–Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids. Langmuir, 2015, 31, 12783-12796.	3.5	123
24	Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 2667-2677.	5.3	121
25	Sorption-Induced Diffusion-Selective Separation of Hydrocarbon Isomers Using Silicalite. Journal of Physical Chemistry A, 1998, 102, 7727-7730.	2.5	118

26

#	Article	IF	CITATIONS
37	Economic assessment of novel amine based CO2 capture technologies integrated in power plants based on European Benchmarking Task Force methodology. Applied Energy, 2015, 138, 546-558.	10.1	94
38	Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nature Communications, 2015, 6, 8743.	12.8	93
39	Molecular simulation of adsorption of short linear alkanes and their mixtures in silicalite. AICHE Journal, 1998, 44, 1756-1764.	3.6	90
40	Shape Selectivity in Hydrocarbon Conversion. Angewandte Chemie - International Edition, 2001, 40, 736-739.	13.8	88
41	Investigation of aerosol based emission of MEA due to sulphuric acid aerosol and soot in a Post Combustion CO2 Capture process. International Journal of Greenhouse Gas Control, 2013, 19, 138-144.	4.6	88
42	Polarizable Force Fields for CO ₂ and CH ₄ Adsorption in M-MOF-74. Journal of Physical Chemistry C, 2017, 121, 4659-4673.	3.1	87
43	Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. Molecular Simulation, 2021, 47, 831-845.	2.0	87
44	Predictive Darken Equation for Maxwell-Stefan Diffusivities in Multicomponent Mixtures. Industrial & Engineering Chemistry Research, 2011, 50, 10350-10358.	3.7	84
45	High-Pressure Electrochemical Reduction of CO ₂ to Formic Acid/Formate: Effect of pH on the Downstream Separation Process and Economics. Industrial & Engineering Chemistry Research, 2019, 58, 22718-22740.	3.7	84
46	Compressibility, thermal expansion coefficient and heat capacity of CH ₄ and CO ₂ hydrate mixtures using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 2869-2883.	2.8	82
47	Understanding interactions between capped nanocrystals: Three-body and chain packing effects. Journal of Chemical Physics, 2009, 131, 124705.	3.0	81
48	Morphological Transformations and Fusion of PbSe Nanocrystals Studied Using Atomistic Simulations. Nano Letters, 2010, 10, 3966-3971.	9.1	79
49	Fick Diffusion Coefficients in Ternary Liquid Systems from Equilibrium Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research, 2012, 51, 10247-10258.	3.7	79
50	Understanding Adsorption of Highly Polar Vapors on Mesoporous MIL-100(Cr) and MIL-101(Cr): Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2013, 117, 7613-7622.	3.1	79
51	Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO4â^'5. Journal of Physical Chemistry B, 1998, 102, 7183-7189.	2.6	77
52	Differences in Cross-Link Chemistry between Rigid and Flexible Dithiol Molecules Revealed by Optical Studies of CdTe Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 11208-11215.	3.1	77
53	Entropy Maximization in the Force Network Ensemble for Granular Solids. Physical Review Letters, 2008, 100, 238001.	7.8	72
54	Thermodynamics of a small system in a \hat{l} T reservoir. Chemical Physics Letters, 2011, 504, 199-201.	2.6	71

#	Article	IF	CITATIONS
55	Conceptual Design of a Novel CO ₂ Capture Process Based on Precipitating Amino Acid Solvents. Industrial & Engineering Chemistry Research, 2013, 52, 12223-12235.	3.7	71
56	Dual release of proteins from porous polymeric scaffolds. Journal of Controlled Release, 2006, 111, 95-106.	9.9	70
57	Fick Diffusion Coefficients of Liquid Mixtures Directly Obtained From Equilibrium Molecular Dynamics. Journal of Physical Chemistry B, 2011, 115, 12921-12929.	2.6	70
58	Structural, Thermodynamic, and Transport Properties of Aqueous Reline and Ethaline Solutions from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2019, 123, 11014-11025.	2.6	70
59	Adsorption and Diffusion of Water, Methanol, and Ethanol in All-Silica DD3R: Experiments and Simulation. Journal of Physical Chemistry C, 2009, 113, 14290-14301.	3.1	69
60	Influence of Nanoscale Intimacy and Zeolite Micropore Size on the Performance of Bifunctional Catalysts for <i>n</i> -Heptane Hydroisomerization. ACS Catalysis, 2020, 10, 14245-14257.	11.2	68
61	Molecular Simulation Study on the Separation of Xylene Isomers in MIL-47 Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2009, 113, 20869-20874.	3.1	67
62	The force network ensemble for granular packings. Soft Matter, 2010, 6, 2908.	2.7	67
63	Solubility of the Precombustion Gases CO ₂ , CH ₄ , CO, H ₂ , N ₂ , and H ₂ S in the Ionic Liquid [bmim][Tf ₂ N] from Monte Carlo Simulations. Journal of Physical Chemistry C, 2014, 118, 23599-23604.	3.1	67
64	OCTP: A Tool for On-the-Fly Calculation of Transport Properties of Fluids with the Order- <i>n</i> Algorithm in LAMMPS. Journal of Chemical Information and Modeling, 2019, 59, 1290-1294.	5.4	67
65	On the Mechanism Behind the Instability of Isoreticular Metal–Organic Frameworks (IRMOFs) in Humid Environments. Chemistry - A European Journal, 2012, 18, 12260-12266.	3.3	66
66	Water adsorption in hydrophilic zeolites: experiment and simulation. Physical Chemistry Chemical Physics, 2013, 15, 17374.	2.8	66
67	Thermodynamics of small systems embedded in a reservoir: a detailed analysis of finite size effects. Molecular Physics, 2012, 110, 1069-1079.	1.7	62
68	Shape selectivity through entropy. Journal of Catalysis, 2003, 214, 88-99.	6.2	60
69	Evaluation of various water models for simulation of adsorption in hydrophobic zeolites. Molecular Simulation, 2009, 35, 1067-1076.	2.0	60
70	A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. Journal of Chemical Theory and Computation, 2014, 10, 942-952.	5.3	60
71	Atomistic Understanding of Zeolite Nanosheets for Water Desalination. Journal of Physical Chemistry C, 2017, 121, 11273-11280.	3.1	60
72	Differences between MFI- and MEL-Type Zeolites in Paraffin Hydrocracking. Journal of Catalysis, 2001, 203, 281-291.	6.2	58

#	Article	IF	CITATIONS
73	Study of glassy polymers fractional accessible volume (FAV) by extended method of hydrostatic weighing: Effect of porous structure on liquid transport. Reactive and Functional Polymers, 2015, 86, 269-281.	4.1	58
74	Unraveling the Argon Adsorption Processes in MFI-Type Zeolite. Journal of Physical Chemistry C, 2008, 112, 9976-9979.	3.1	57
75	Tail of the contact force distribution in static granular materials. Physical Review E, 2007, 75, 060302.	2.1	55
76	Photon management with lanthanides. Optical Materials, 2006, 28, 575-581.	3.6	52
77	Enantioselective adsorption of ibuprofen and lysine in metal–organic frameworks. Chemical Communications, 2014, 50, 10849.	4.1	52
78	Understanding aerosol based emissions in a Post Combustion CO2 Capture process: Parameter testing and mechanisms. International Journal of Greenhouse Gas Control, 2015, 34, 63-74.	4.6	52
79	Diffusion of isobutane in silicalite studied by transition path sampling. Journal of Chemical Physics, 2000, 113, 8791-8799.	3.0	51
80	Solvent Effects in the Adsorption of Alkyl Thiols on Gold Structures:  A Molecular Simulation Study. Journal of Physical Chemistry C, 2007, 111, 10201-10212.	3.1	51
81	Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture: Net present value maximisation. International Journal of Greenhouse Gas Control, 2012, 11, S114-S121.	4.6	51
82	Computing solubility parameters of deep eutectic solvents from Molecular Dynamics simulations. Fluid Phase Equilibria, 2019, 497, 10-18.	2.5	51
83	Direct Water Injection in Catholyteâ€Free Zeroâ€Gap Carbon Dioxide Electrolyzers. ChemElectroChem, 2020, 7, 3839-3843.	3.4	51
84	Molecular Simulation of Propaneâ^'Propylene Binary Adsorption Equilibrium in Zeolite 13X. Industrial & Engineering Chemistry Research, 2007, 46, 7239-7245.	3.7	50
85	Multicomponent Maxwellâ^'Stefan Diffusivities at Infinite Dilution. Industrial & Engineering Chemistry Research, 2011, 50, 4776-4782.	3.7	50
86	Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 5959-5968.	5.3	50
87	How to apply the Kirkwood–Buff theory to individual species in salt solutions. Chemical Physics Letters, 2013, 582, 154-157.	2.6	49
88	Hydride Transfer versus Deprotonation Kinetics in the Isobutane–Propene Alkylation Reaction: A Computational Study. ACS Catalysis, 2017, 7, 8613-8627.	11.2	49
89	The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: An experimental and Monte Carlo simulation study. Chemical Engineering Journal, 2020, 389, 123968.	12.7	49
90	Atomic Resolution Monitoring of Cation Exchange in CdSe-PbSe Heteronanocrystals during Epitaxial Solid–Solid–Vapor Growth. Nano Letters, 2014, 14, 3661-3667.	9.1	48

#	Article	IF	CITATIONS
91	Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands. Nature Communications, 2016, 7, 11503.	12.8	48
92	Field study of a Brownian Demister Unit to reduce aerosol based emission from a Post Combustion CO 2 Capture plant. International Journal of Greenhouse Gas Control, 2014, 28, 57-64.	4.6	47
93	Direct Free Energy Calculation in the Continuous Fractional Component Gibbs Ensemble. Journal of Chemical Theory and Computation, 2016, 12, 1481-1490.	5.3	47
94	Finite-size effects of Kirkwood–Buff integrals from molecular simulations. Molecular Simulation, 2018, 44, 599-612.	2.0	47
95	Ensemble theory for force networks in hyperstatic granular matter. Physical Review E, 2004, 70, 061306.	2.1	45
96	New Ab Initio Based Pair Potential for Accurate Simulation of Phase Transitions in ZnO. Journal of Physical Chemistry C, 2014, 118, 11050-11061.	3.1	45
97	Generalized Form for Finite-Size Corrections in Mutual Diffusion Coefficients of Multicomponent Mixtures Obtained from Equilibrium Molecular Dynamics Simulation. Journal of Chemical Theory and Computation, 2020, 16, 3799-3806.	5.3	45
98	Manufacture of dense CAU-10-H coatings for application in adsorption driven heat pumps: optimization and characterization. CrystEngComm, 2015, 17, 5911-5920.	2.6	44
99	Product shape selectivity of MFI-type, MEL-type, and BEA-type zeolites in the catalytic hydroconversion of heptane. Journal of Catalysis, 2017, 353, 54-62.	6.2	44
100	Solubility of Water in Hydrogen at High Pressures: A Molecular Simulation Study. Journal of Chemical & Engineering Data, 2019, 64, 4103-4115.	1.9	43
101	Insight into the Effect of Dealumination on Mordenite Using Experimentally Validated Simulations. Journal of Physical Chemistry C, 2010, 114, 2056-2065.	3.1	41
102	Behavior of the Enthalpy of Adsorption in Nanoporous Materials Close to Saturation Conditions. Journal of Chemical Theory and Computation, 2017, 13, 3326-3339.	5.3	41
103	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	2.8	41
104	High pressure solubility of CO2 in non-fluorinated phosphonium-based ionic liquids. Journal of Supercritical Fluids, 2013, 82, 41-49.	3.2	40
105	Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels. Energy Conversion and Management, 2018, 174, 824-843.	9.2	40
106	Size and shape dependence of finite-volume Kirkwood-Buff integrals. Physical Review E, 2018, 97, 051301.	2.1	40
107	Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide. ACS Applied Materials & Interfaces, 2021, 13, 43233-43240.	8.0	40
108	Recoil growth algorithm for chain molecules with continuous interactions. Molecular Physics, 1999, 97, 1243-1254.	1.7	39

#	Article	IF	CITATIONS
109	Maxwell–Stefan diffusivities in liquid mixtures: Using molecular dynamics for testing model predictions. Fluid Phase Equilibria, 2011, 301, 110-117.	2.5	39
110	Analysis of Process Configurations for CO ₂ Capture by Precipitating Amino Acid Solvents. Industrial & Engineering Chemistry Research, 2014, 53, 2348-2361.	3.7	39
111	Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation. Industrial & Engineering Chemistry Research, 2018, 57, 5442-5452.	3.7	39
112	Recovery of Cerium from Glass Polishing Waste: A Critical Review. Metals, 2018, 8, 801.	2.3	39
113	Molecular Simulation of Propaneâ``Propylene Binary Adsorption Equilibrium in Zeolite 4A. Industrial & Engineering Chemistry Research, 2007, 46, 321-328.	3.7	38
114	Modeling the Electrochemical Conversion of Carbon Dioxide to Formic Acid or Formate at Elevated Pressures. Journal of the Electrochemical Society, 2019, 166, E77-E86.	2.9	38
115	Recent advances in the continuous fractional component Monte Carlo methodology. Molecular Simulation, 2021, 47, 804-823.	2.0	38
116	Modeling the Loading Dependency of Diffusion in Zeolites: The Relevant Site Model. Journal of Physical Chemistry C, 2009, 113, 17840-17850.	3.1	37
117	Diffusion of propane, propylene and isobutane in 13X zeolite by molecular dynamics. Chemical Engineering Science, 2010, 65, 2656-2663.	3.8	37
118	Acid Wash Scrubbing as a Countermeasure for Ammonia Emissions from a Postcombustion CO ₂ Capture Plant. Industrial & Engineering Chemistry Research, 2014, 53, 13195-13204.	3.7	37
119	Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. Journal of Chemical Theory and Computation, 2017, 13, 4452-4466.	5.3	37
120	Combined Steam Reforming of Methane and Formic Acid To Produce Syngas with an Adjustable H ₂ :CO Ratio. Industrial & Engineering Chemistry Research, 2018, 57, 10663-10674.	3.7	37
121	Adsorption Selectivity of Benzene/Propene Mixtures for Various Zeolites. Journal of Physical Chemistry C, 2007, 111, 17241-17248.	3.1	36
122	Adsorption Equilibrium of Isobutane and 1-Butene in Zeolite 13X by Molecular Simulation. Industrial & Engineering Chemistry Research, 2008, 47, 6166-6174.	3.7	36
123	Prediction of adsorption isotherms from breakthrough curves. Microporous and Mesoporous Materials, 2019, 277, 237-244.	4.4	36
124	Maxwell–Stefan Diffusivities in Binary Mixtures of Ionic Liquids with Dimethyl Sulfoxide (DMSO) and H ₂ O. Journal of Physical Chemistry B, 2011, 115, 8506-8517.	2.6	35
125	Solubility of CO ₂ in the Ionic Liquids [TBMN][MeSO ₄] and [TBMP][MeSO ₄]. Journal of Chemical & Engineering Data, 2012, 57, 2275-2280.	1.9	35
126	Crystals for sustainability – structuring Al-based MOFs for the allocation of heat and cold. CrystEngComm, 2015, 17, 281-285.	2.6	35

#	Article	IF	CITATIONS
127	Phase Diagram of Methane and Carbon Dioxide Hydrates Computed by Monte Carlo Simulations. Journal of Physical Chemistry B, 2017, 121, 7336-7350.	2.6	35
128	The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study. Fuel, 2019, 258, 116106.	6.4	35
129	Electroreduction of CO ₂ /CO to C ₂ Products: Process Modeling, Downstream Separation, System Integration, and Economic Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 17862-17880.	3.7	35
130	Performance of Chiral Zeolites for Enantiomeric Separation Revealed by Molecular Simulation. Journal of Physical Chemistry C, 2010, 114, 22207-22213.	3.1	34
131	Stress fluctuations in granular force networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P04002.	2.3	34
132	Solubility of CO2/CH4 gas mixtures in ionic liquids. Fluid Phase Equilibria, 2014, 375, 134-142.	2.5	34
133	Determining Force Field Parameters Using a Physically Based Equation of State. Journal of Physical Chemistry B, 2011, 115, 7872-7880.	2.6	33
134	Assessing the Surface Area of Porous Solids: Limitations, Probe Molecules, and Methods. Langmuir, 2016, 32, 12664-12675.	3.5	33
135	Using molecular dynamics to obtain Maxwell-Stefan diffusion coefficients in liquid systems. Molecular Physics, 1998, 94, 495-503.	1.7	33
136	In Silico Screening of Metal–Organic Frameworks for Adsorption-Driven Heat Pumps and Chillers. ACS Applied Materials & Interfaces, 2018, 10, 27074-27087.	8.0	32
137	Brick-CFCMC: Open Source Software for Monte Carlo Simulations of Phase and Reaction Equilibria Using the Continuous Fractional Component Method. Journal of Chemical Information and Modeling, 2020, 60, 2678-2682.	5.4	32
138	Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations. Journal of Controlled Release, 2006, 111, 117-127.	9.9	31
139	Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. Journal of Computational Science, 2016, 15, 74-80.	2.9	31
140	Development of efficient formulation for the removal of iron sulphide scale in sour production wells. Canadian Journal of Chemical Engineering, 2018, 96, 2526-2533.	1.7	31
141	CO2 stripping from ionic liquid at elevated pressures in gas-liquid membrane contactor. International Journal of Greenhouse Gas Control, 2018, 71, 293-302.	4.6	31
142	Computation of gas solubilities in choline chloride urea and choline chloride ethylene glycol deep eutectic solvents using Monte Carlo simulations. Journal of Molecular Liquids, 2020, 316, 113729.	4.9	31
143	Sheared Force Networks: Anisotropies, Yielding, and Geometry. Physical Review Letters, 2006, 96, 098001.	7.8	30
144	Liquid permeation through PTMSP: One polymer for two different membrane applications. Journal of Membrane Science, 2013, 440, 98-107.	8.2	30

#	Article	IF	CITATIONS
145	Simulating the Reactions of CO2 in Aqueous Monoethanolamine Solution by Reaction Ensemble Monte Carlo Using the Continuous Fractional Component Method. Journal of Chemical Theory and Computation, 2015, 11, 2661-2669.	5.3	30
146	Diffusivity of α-, β-, γ-cyclodextrin and the inclusion complex of β-cyclodextrin: Ibuprofen in aqueous solutions; A molecular dynamics simulation study. Fluid Phase Equilibria, 2021, 528, 112842.	2.5	30
147	Solubility of sulfur compounds in commercial physical solvents and an ionic liquid from Monte Carlo simulations. Fluid Phase Equilibria, 2017, 433, 50-55.	2.5	29
148	Polarizable Force Field for CO ₂ in M-MOF-74 Derived from Quantum Mechanics. Journal of Physical Chemistry C, 2018, 122, 24488-24498.	3.1	29
149	Modeling the Loading Dependency of Diffusion in Zeolites: the Relevant Site Model Extended to Mixtures in DDR-Type Zeolite. Journal of Physical Chemistry C, 2009, 113, 21856-21865.	3.1	28
150	Validation of the CO ₂ /N ₂ O Analogy Using Molecular Simulation. Industrial & Engineering Chemistry Research, 2014, 53, 18081-18090.	3.7	28
151	Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Physics, 2018, 116, 3331-3344.	1.7	28
152	Solving vapor-liquid flash problems using artificial neural networks. Fluid Phase Equilibria, 2019, 490, 39-47.	2.5	28
153	Selective adsorption of alkyl thiols on gold in different geometries. Computer Physics Communications, 2007, 177, 154-157.	7.5	26
154	Solubility of Natural Gas Species in Ionic Liquids and Commercial Solvents: Experiments and Monte Carlo Simulations. Journal of Chemical & Engineering Data, 2015, 60, 3039-3045.	1.9	26
155	Prediction of Composition-Dependent Self-Diffusion Coefficients in Binary Liquid Mixtures: The Missing Link for Darken-Based Models. Industrial & Engineering Chemistry Research, 2018, 57, 14784-14794.	3.7	26
156	A Coarse-Graining Approach for the Proton Complex in Protonated Aluminosilicates. Journal of Physical Chemistry B, 2006, 110, 5838-5841.	2.6	25
157	Investigating polarization effects of CO2 adsorption in MgMOF-74. Journal of Computational Science, 2016, 15, 86-94.	2.9	25
158	Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites. ACS Applied Materials & Interfaces, 2018, 10, 16911-16917.	8.0	25
159	Zeolite microporosity studied by molecular simulation. Molecular Simulation, 2009, 35, 1105-1115.	2.0	24
160	Toward a Possibility To Exchange CO ₂ and CH ₄ in sl Clathrate Hydrates. Journal of Physical Chemistry B, 2012, 116, 3745-3753.	2.6	24
161	Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface. Frontiers in Chemistry, 2013, 1, 38.	3.6	24
162	How sensitive are physical properties of choline chloride–urea mixtures to composition changes: Molecular dynamics simulations and Kirkwood–Buff theory. Journal of Chemical Physics, 2021, 154, 184502.	3.0	24

#	Article	IF	CITATIONS
163	Strategies to Simultaneously Enhance the Hydrostability and the Alcohol–Water Separation Behavior of Cu-BTC. Journal of Physical Chemistry C, 2013, 117, 20706-20714.	3.1	23
164	Mechanical Response of Nanocrystalline Ice-Contained Methane Hydrates: Key Role of Water Ice. ACS Applied Materials & Interfaces, 2020, 12, 14016-14028.	8.0	23
165	On the validity of the Stokes–Einstein relation for various water force fields. Molecular Physics, 2020, 118, e1702729.	1.7	22
166	Exploring new methods and materials for enantioselective separations and catalysis. Molecular Simulation, 2014, 40, 585-598.	2.0	21
167	Thermal conductivity of carbon dioxide from non-equilibrium molecular dynamics: A systematic study of several common force fields. Journal of Chemical Physics, 2014, 141, 134504.	3.0	21
168	Real-Time Process Monitoring of CO ₂ Capture by Aqueous AMP-PZ Using Chemometrics: Pilot Plant Demonstration. Industrial & Engineering Chemistry Research, 2015, 54, 5769-5776.	3.7	21
169	Computation of the Heat and Entropy of Adsorption in Proximity of Inflection Points. Journal of Physical Chemistry C, 2016, 120, 1727-1738.	3.1	21
170	Kirkwood-Buff Integrals Using Molecular Simulation: Estimation of Surface Effects. Nanomaterials, 2020, 10, 771.	4.1	21
171	Adsorption of Volatile Organic Compounds. Experimental and Theoretical Study. Industrial & Engineering Chemistry Research, 2012, 51, 16697-16708.	3.7	20
172	Partial molar enthalpies and reaction enthalpies from equilibrium molecular dynamics simulation. Journal of Chemical Physics, 2014, 141, 144501.	3.0	20
173	Heat-induced transformation of CdSe–CdS–ZnS core–multishell quantum dots by Zn diffusion into inner layers. Chemical Communications, 2015, 51, 3320-3323.	4.1	20
174	Computation of thermodynamic properties in the continuous fractional component Monte Carlo Gibbs ensemble. Molecular Simulation, 2017, 43, 189-195.	2.0	20
175	Adsorption equilibrium of nitrogen dioxide in porous materials. Physical Chemistry Chemical Physics, 2018, 20, 4189-4199.	2.8	20
176	Theoretical study on cation codoped SrTiO ₃ photocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 24342-24349.	10.3	20
177	Optimizing Nonbonded Interactions of the OPLS Force Field for Aqueous Solutions of Carbohydrates: How to Capture Both Thermodynamics and Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 6690-6700.	5.3	20
178	Identifying Zeolite Topologies for Storage and Release of Hydrogen. Journal of Physical Chemistry C, 2018, 122, 12485-12493.	3.1	20
179	Inclusion Complexation of Organic Micropollutants with β-Cyclodextrin. Journal of Physical Chemistry B, 2020, 124, 1218-1228.	2.6	20
180	From Sphere to Multipod: Thermally Induced Transitions of CdSe Nanocrystals Studied by Molecular Dynamics Simulations. Journal of the American Chemical Society, 2013, 135, 5869-5876.	13.7	19

#	Article	IF	CITATIONS
181	Predicting Aerosol Based Emissions in a Post Combustion CO2 Capture Process Using an Aspen Plus Model. Energy Procedia, 2014, 63, 911-925.	1.8	19
182	A transferable force field for CdS-CdSe-PbS-PbSe solid systems. Journal of Chemical Physics, 2014, 141, 244503.	3.0	19
183	Precipitating Amino Acid Solvents for CO2 Capture. Opportunities to Reduce Costs in Post Combustion Capture Energy Procedia, 2014, 63, 727-738.	1.8	19
184	Comparison of Raman, NIR, and ATR FTIR spectroscopy as analytical tools for in-line monitoring of CO 2 concentration in an amine gas treating process. International Journal of Greenhouse Gas Control, 2016, 47, 17-24.	4.6	19
185	Kirkwood–Buff integrals of finite systems: shape effects. Molecular Physics, 2018, 116, 1573-1580.	1.7	19
186	External Surface Adsorption on Silicalite-1 Zeolite Studied by Molecular Simulation. Journal of Physical Chemistry C, 2011, 115, 15355-15360.	3.1	18
187	A direct method for calculating thermodynamic factors for liquid mixtures using the Permuted Widom test particle insertion method. Molecular Physics, 2013, 111, 287-296.	1.7	18
188	Optimization of Particle Transfers in the Gibbs Ensemble for Systems with Strong and Directional Interactions Using CBMC, CFCMC, and CB/CFCMC. Journal of Physical Chemistry C, 2016, 120, 9148-9159.	3.1	18
189	Molecular Simulation of Vapor–Liquid Equilibria Using the Wolf Method for Electrostatic Interactions. Journal of Chemical & Engineering Data, 2018, 63, 1096-1102.	1.9	18
190	Potential of polarizable force fields for predicting the separation performance of small hydrocarbons in M-MOF-74. Physical Chemistry Chemical Physics, 2018, 20, 28848-28859.	2.8	18
191	Enhancing the Water Capacity in Zr-Based Metal–Organic Framework for Heat Pump and Atmospheric Water Generator Applications. ACS Applied Nano Materials, 2019, 2, 3050-3059.	5.0	18
192	Molecular Dynamics Simulation of Self-Diffusion and Maxwell-Stefan Diffusion Coefficients in Liquid Mixtures of Methanol and Water. Molecular Simulation, 1999, 23, 79-94.	2.0	17
193	Chemical potentials of water, methanol, carbon dioxide and hydrogen sulphide at low temperatures using continuous fractional component Gibbs ensemble Monte Carlo. Molecular Simulation, 2018, 44, 405-414.	2.0	17
194	Effect of truncating electrostatic interactions on predicting thermodynamic properties of water–methanol systems. Molecular Simulation, 2019, 45, 336-350.	2.0	17
195	Two-Phase Equilibrium Conditions in Nanopores. Nanomaterials, 2020, 10, 608.	4.1	17
196	The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components. Journal of Chemical Physics, 2013, 139, 034505.	3.0	16
197	Effective Model for Olefin/Paraffin Separation using (Co, Fe, Mn, Ni)â€MOFâ€74. ChemistrySelect, 2017, 2, 665-672.	1.5	16
198	Effects of Framework Flexibility on the Adsorption and Diffusion of Aromatics in MFI-Type Zeolites. Journal of Physical Chemistry C, 2020, 124, 24488-24499.	3.1	16

#	Article	IF	CITATIONS
199	Thermodynamic, transport, and structural properties of hydrophobic deep eutectic solvents composed of tetraalkylammonium chloride and decanoic acid. Journal of Chemical Physics, 2021, 154, 144502.	3.0	16
200	Vapor pressures and vapor phase compositions of choline chloride urea and choline chloride ethylene glycol deep eutectic solvents from molecular simulation. Journal of Chemical Physics, 2021, 155, 114504.	3.0	16
201	Dynamic pruned-enriched Rosenbluth method. Molecular Physics, 2003, 101, 1675-1682.	1.7	15
202	Force balance in canonical ensembles of static granular packings. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P01015.	2.3	15
203	Simulation Study on the Adsorption Properties of Linear Alkanes on Closed Nanotube Bundles. Journal of Physical Chemistry B, 2012, 116, 9812-9819.	2.6	15
204	Phase Behavior of Liquid Crystals with CO ₂ . Journal of Physical Chemistry B, 2012, 116, 9101-9106.	2.6	15
205	The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids. Journal of Chemical Physics, 2013, 138, 204905.	3.0	15
206	Bridging scales with thermodynamics: from nano to macro. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 023002.	1.5	15
207	CO ₂ Solubility in Biodegradable Hydroxylammonium-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2014, 59, 702-708.	1.9	15
208	Online Corrosion Monitoring in a Postcombustion CO ₂ Capture Pilot Plant and its Relation to Solvent Degradation and Ammonia Emissions. Industrial & Engineering Chemistry Research, 2015, 54, 5336-5344.	3.7	15
209	Modeling Thermodynamic Properties of Propane or Tetrahydrofuran Mixed with Carbon Dioxide or Methane in Structure-II Clathrate Hydrates. Journal of Physical Chemistry C, 2017, 121, 23911-23925.	3.1	15
210	Thermodynamic and Transport Properties of Crown-Ethers: Force Field Development and Molecular Simulations. Journal of Physical Chemistry B, 2017, 121, 8367-8376.	2.6	15
211	Improving the accuracy of computing chemical potentials in CFCMC simulations. Molecular Physics, 2019, 117, 3493-3508.	1.7	15
212	Gibbs Ensemble Monte Carlo Simulation of Fluids in Confinement: Relation between the Differential and Integral Pressures. Nanomaterials, 2020, 10, 293.	4.1	15
213	Coarse-grained model for gold nanocrystals with an organic capping layer. Molecular Physics, 2007, 105, 3177-3184.	1.7	14
214	Mechanical properties of bi- and poly-crystalline ice. AIP Advances, 2018, 8, .	1.3	14
215	Liquid–Liquid Extraction of Formic Acid with 2-Methyltetrahydrofuran: Experiments, Process Modeling, and Economics. Industrial & Engineering Chemistry Research, 2021, 60, 5588-5599.	3.7	14
216	New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. Journal of Chemical Information and Modeling, 2021, 61, 3752-3757.	5.4	14

#	Article	IF	CITATIONS
217	Efficiency of Parallel CBMC Simulations. Molecular Simulation, 1999, 23, 63-78.	2.0	13
218	On the efficient sampling of pathways in the transition path ensemble. PhysChemComm, 2001, 4, 11.	0.8	13
219	Diffusion in zeolites: Extension of the relevant site model to light gases and mixtures thereof in zeolites DDR, CHA, MFI and FAU. Separation and Purification Technology, 2010, 73, 151-163.	7.9	13
220	An analytical approximation for the orientation-dependent excluded volume of tangent hard sphere chains of arbitrary chain length and flexibility. Journal of Chemical Physics, 2012, 137, 044906.	3.0	13
221	Crystal structure, stability, and electronic properties of hydrated metal sulfates MSO4(H2O)n (M=Ni,) Tj ETQq1 1 77-86.	0.784314 3.8	ł rgBT ∣Overl 13
222	In-situ experimental investigation on the growth of aerosols along the absorption column in post combustion carbon capture. International Journal of Greenhouse Gas Control, 2019, 85, 86-99.	4.6	13
223	Multiple linear regression and thermodynamic fluctuations are equivalent for computing thermodynamic derivatives from molecular simulation. Fluid Phase Equilibria, 2020, 523, 112785.	2.5	13
224	Thermal conductivity of aqueous solutions of reline, ethaline, and glyceline deep eutectic solvents; a molecular dynamics simulation study. Molecular Physics, 2021, 119, .	1.7	13
225	Solubilities and Transport Properties of CO ₂ , Oxalic Acid, and Formic Acid in Mixed Solvents Composed of Deep Eutectic Solvents, Methanol, and Propylene Carbonate. Journal of Physical Chemistry B, 2022, 126, 3572-3584.	2.6	13
226	Soft Hedgehogs on Coarse Carpets: A Molecular Simulation Study of Capped Nanocrystals Interacting with Self-Assembled Monolayers of Alkylthiols on a Gold (111) Surface. Journal of Physical Chemistry C, 2010, 114, 2531-2537.	3.1	12
227	Influence of force field parameters on computed diffusion coefficients of CO2 in LTA-type zeolite. Microporous and Mesoporous Materials, 2012, 158, 64-76.	4.4	12
228	Thermal Conductivity in Zeolites Studied by Non-equilibrium Molecular Dynamics Simulations. International Journal of Thermophysics, 2013, 34, 1197-1213.	2.1	12
229	An equation of state for the isotropic phase of linear, partially flexible and fully flexible tangent hard-sphere chain fluids. Molecular Physics, 2014, 112, 919-928.	1.7	12
230	Recovery of rare earths from glass polishing waste for the production of aluminium-rare earth alloys. Resources, Conservation and Recycling, 2021, 174, 105766.	10.8	12
231	Interfacial Properties of Hydrophobic Deep Eutectic Solvents with Water. Journal of Physical Chemistry B, 2021, 125, 12303-12314.	2.6	12
232	Molecular simulations of the adsorption of cycloalkanes in MFI-type silica. Physical Chemistry Chemical Physics, 2005, 7, 2622.	2.8	11
233	Universal anisotropy in force networks under shear. Physical Review E, 2007, 75, 030301.	2.1	11
234	Potential Desorbents for Propane/Propylene Separation by Gas Phase Simulated Moving Bed: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2010, 49, 5826-5833.	3.7	11

#	Article	IF	CITATIONS
235	An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility. Journal of Chemical Physics, 2015, 142, 244903.	3.0	11
236	Gibbs ensemble Monte Carlo simulations of multicomponent natural gas mixtures. Molecular Simulation, 2018, 44, 377-383.	2.0	11
237	Modeling the phase equilibria of asymmetric hydrocarbon mixtures using molecular simulation and equations of state. AICHE Journal, 2019, 65, 792-803.	3.6	11
238	Adsorption of n-alkanes in ZIF-8: Influence of crystal size and framework dynamics. Microporous and Mesoporous Materials, 2021, 312, 110730.	4.4	11
239	A multiscale modelling approach to elucidate the mechanism of the oxygen evolution reaction at the hematite–water interface. Faraday Discussions, 2021, 229, 89-107.	3.2	11
240	Competitive Adsorption of Xylenes at Chemical Equilibrium in Zeolites. Journal of Physical Chemistry C, 2021, 125, 4155-4174.	3.1	11
241	Computing phase equilibria by parallel excluded volume tempering. Journal of Chemical Physics, 2001, 115, 8731-8741.	3.0	10
242	Adsorption of Argon on MFI Nanosheets: Experiments and Simulations. Journal of Physical Chemistry C, 2013, 117, 24503-24510.	3.1	10
243	Probing Lipid Coating Dynamics of Quantum Dot Core Micelles via Förster Resonance Energy Transfer. Small, 2014, 10, 1163-1170.	10.0	10
244	Measurement of chemical potentials of systems with strong excluded volume interactions by computing the density of states. Molecular Physics, 2002, 100, 2763-2771.	1.7	9
245	Core–shell reconfiguration through thermal annealing in Fe _{<i>x</i>} O/CoFe ₂ O ₄ ordered 2D nanocrystal arrays. Nanotechnology, 2014, 25, 055601.	2.6	9
246	Simulation of Pore Width and Pore Charge Effects on Selectivities of CO2 vs. H2 from a Syngas-like Mixture in Carbon Mesopores. Energy Procedia, 2015, 64, 150-159.	1.8	9
247	Computing equation of state parameters of gases from Monte Carlo simulations. Fluid Phase Equilibria, 2016, 428, 174-181.	2.5	9
248	Computing bubble-points of CO2/CH4 gas mixtures in ionic liquids from Monte Carlo simulations. Fluid Phase Equilibria, 2016, 418, 100-107.	2.5	9
249	Adsorption of Aromatics in MFI-Type Zeolites: Experiments and Framework Flexibility in Monte Carlo Simulations. Journal of Physical Chemistry C, 2020, 124, 21782-21797.	3.1	9
250	Multiple Free Energy Calculations from Single State Point Continuous Fractional Component Monte Carlo Simulation Using Umbrella Sampling. Journal of Chemical Theory and Computation, 2020, 16, 1757-1767.	5.3	9
251	Surface Coverage as an Important Parameter for Predicting Selectivity Trends in Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 11927-11936.	3.1	9
252	Phase behaviour of the system 4′-pentyloxy-4-cyanobiphenyl+CO2. Journal of Chemical Thermodynamics, 2013, 59, 20-27.	2.0	8

#	Article	IF	CITATIONS
253	Phase Behavior of Liquid Crystal + CO ₂ Mixtures. Journal of Chemical & Engineering Data, 2014, 59, 1667-1672.	1.9	8
254	Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure components and binary mixtures. Journal of Chemical Physics, 2015, 142, 064903.	3.0	8
255	Liquid-crystal phase equilibria of Lennard-Jones chains. Molecular Physics, 2016, 114, 895-908.	1.7	8
256	Effect of Water Content on Thermodynamic Properties of Compressed Hydrogen. Journal of Chemical & Engineering Data, 2021, 66, 2071-2087.	1.9	8
257	Electro-osmotic Drag and Thermodynamic Properties of Water in Hydrated Nafion Membranes from Molecular Dynamics. Journal of Physical Chemistry C, 2022, 126, 8121-8133.	3.1	8
258	Negative Effects of Inorganic Salt Invasion on the Dissociation Kinetics of Silica-Confined Gas Hydrate via Thermal Stimulation. Energy & Fuels, 2022, 36, 6216-6228.	5.1	8
259	Using an Analytic Equation of State to Obtain Quantitative Solubilities of CO2 by Molecular Simulation. Journal of Physical Chemistry Letters, 2011, 2, 393-396.	4.6	7
260	Calculating thermodynamic factors of ternary and multicomponent mixtures using the Permuted Widom test particle insertion method. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	7
261	Binary and ternary mixtures of liquid crystals with CO ₂ . AICHE Journal, 2015, 61, 2977-2984.	3.6	7
262	CO2 solubility in small carboxylic acids: Monte Carlo simulations and PC-SAFT modeling. Fluid Phase Equilibria, 2018, 458, 1-8.	2.5	7
263	Highlights of (bio-)chemical tools and visualization software for computational science. Current Opinion in Chemical Engineering, 2019, 23, 1-13.	7.8	7
264	In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. ACS Applied Materials & Interfaces, 2021, 13, 8383-8394.	8.0	7
265	Solubility of Carbon Dioxide, Hydrogen Sulfide, Methane, and Nitrogen in Monoethylene Glycol; Experiments and Molecular Simulation. Journal of Chemical & Engineering Data, 2021, 66, 524-534.	1.9	7
266	Chapter 5. Diffusion in Liquids: Experiments, Molecular Dynamics, and Engineering Models. , 2015, , 78-104.		7
267	Study on hexane adsorption inÂzeolite ITQ-29 byÂmolecular simulation. Adsorption, 2008, 14, 763-770.	3.0	6
268	Diffusion of Heat and Mass in a Chemically Reacting Mixture away from Equilibrium. Journal of Physical Chemistry C, 2015, 119, 12838-12847.	3.1	6
269	Molecular simulation of the vapor-liquid equilibria of xylene mixtures: Force field performance, and Wolf vs. Ewald for electrostatic interactions. Fluid Phase Equilibria, 2019, 485, 239-247.	2.5	6
270	Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor–Liquid Equilibrium of CO ₂ and H ₂ O. Journal of Chemical Theory and Computation, 2021, 17, 322-329.	5.3	6

#	Article	IF	CITATIONS
271	Stretching a heteropolymer. Journal of Chemical Physics, 2005, 122, 114904.	3.0	5
272	Adsorption and Diffusion of Alkanes in Na-MOR: Modeling the Effect of the Aluminum Distribution. Journal of Chemical Theory and Computation, 2009, 5, 2858-2865.	5.3	5
273	The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state. Journal of Chemical Physics, 2014, 140, 034504.	3.0	5
274	COSMO-3D: Incorporating Three-Dimensional Contact Information into the COSMO-SAC Model. Industrial & Engineering Chemistry Research, 2015, 54, 2214-2226.	3.7	5
275	On the vapor-liquid equilibrium of attractive chain fluids with variable degree of molecular flexibility. Journal of Chemical Physics, 2015, 142, 224504.	3.0	5
276	Characterization and Feasibility Studies on Complete Recovery of Rare Earths from Glass Polishing Waste. Metals, 2019, 9, 278.	2.3	5
277	Simulation of 1-alkene and n-alkane binary vapour–liquid equilibrium using different united-atom transferable force fields. Fluid Phase Equilibria, 2005, 232, 136-148.	2.5	4
278	Reconciling the Relevant Site Model and dynamically corrected Transition State Theory. Chemical Physics Letters, 2010, 495, 77-79.	2.6	4
279	Phase Behavior of Binary Mixtures of a Liquid Crystal and Methane. Journal of Chemical & Engineering Data, 2015, 60, 2167-2171.	1.9	4
280	In-Line Monitoring of the CO ₂ , MDEA, and PZ Concentrations in the Liquid Phase during High Pressure CO ₂ Absorption. Industrial & Engineering Chemistry Research, 2016, 55, 3804-3812.	3.7	4
281	Isobaric Vapor–Liquid Equilibrium Data of Binary Systems Containing 2-Ethoxyethanol, 2-Ethoxyethyl Acetate, and Toluene. Journal of Chemical & Engineering Data, 2020, 65, 4798-4804.	1.9	4
282	Rayleigh-Brillouin light scattering spectra of CO2 from molecular dynamics. Journal of Chemical Physics, 2019, 151, 064201.	3.0	3
283	Artificial intelligence and thermodynamics help solving arson cases. Scientific Reports, 2020, 10, 20502.	3.3	3
284	Evaluating adsorbed-phase activity coefficient models using a 2D-lattice model. Molecular Simulation, 2015, 41, 1234-1244.	2.0	2
285	The Influence of UiOâ€66 Metal–Organic Framework Structural Defects on Adsorption and Separation of Hexane Isomers. Chemistry - A European Journal, 2022, , .	3.3	2
286	Predictive Model for Optimizing Guest–Host Lennard–Jones Interactions in Zeolites. Journal of Physical Chemistry C, 2011, 115, 10187-10195.	3.1	1
287	Reactive Grand-Canonical Monte Carlo Simulations for Modeling Hydration of MgCl2. ACS Omega, 2021, 6, 32475-32484.	3.5	1
288	Shape Selectivity in Hydrocarbon Conversion These investigations were supported in part by the Netherlands Research Council for Chemical Sciences (CW) with financial aid from the Netherlands Technology Foundation and by the Netherlands Organization for Scientific Research (NWO) through PIONIER. We would like to thank Christa Roemkens, Rob van Veen, Henk Schenk, Daan Frenkel, David Dubbeldam, and Marcello Rigutto for their comments on our manuscript Angewandte Chemie - International Edition, 2001, 40, 736-739.	13.8	1

#	Article	IF	CITATIONS
289	Force network ensemble for the triangular lattice: A tale of tiles. Chaos, 2009, 19, 041107.	2.5	Ο