Thomas D Warkentin

List of Publications by Year

 in descending order[^0]Benefits of a plant-based diet and considerations for the athlete. European Journal of AppliedPhysiology, 2022, 122, 1163-1178.
2.5 22 Physiology, 2022, 122, 1163-1178.

Genotypic variability in root length in pea (<i>Pisum sativum</i> L.) and lentil (<i>Lens culinaris</i>) Tj ETQq0 00 rgBT /Overlock 10 Tf 5
2
Journal, 2022, 5, .
3 Leaf Pigments, Surface Wax and Spectral Vegetation Indices for Heat Stress Resistance in Pea.
Agronomy, 2022, 12, 739.
$3.0 \quad 2$

4 Optimizing Seeding Ratio for Semi-Leafless and Leafed Pea Mixture with Precise UAV Quantification of
Crop Lodging. Agronomy, 2022, 12, 1532.
$3.0 \quad 1$

Functionality and starch digestibility of wrinkled and round pea flours of two different particle
$8.2 \quad 40$
Functionality and starch digestibility of wrin
sizes. Food Chemistry, 2021, 336, 127711.

Essential Oil Profile Diversity in Cardamom Accessions From Southern India. Frontiers in Sustainable
Food Systems, 2021, 5, .
$3.9 \quad 21$

Potential Application of Genomic Technologies in Breeding for Fungal and Oomycete Disease
$7 \quad$ Resistance in Pea. Agronomy, 2021, 11, 1260.
3.0

10

8 Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine:
a review. Clinical Phytoscience, 2021, 7, .
$9 \quad$ Agronomic Performance in Low Phytic Acid Field Peas. Plants, 2021, 10, 1589.
3.5

3

10 Effect of Genotype, Year, and Location on the Proximate Composition and <i>In Vitro</i> Protein
Quality of Select Pea Cultivars. ACS Food Science \& Technology, 2021, 1, 1670-1676.
2.7

3

> Tissue specific changes in elements and organic compounds of alfalfa (Medicago sativa L.) cultivars
> differing in salt tolerance under salt stress. Journal of Plant Physiology, 2021, 264, 153485.

Validated B vitamin quantification from lentils by selected reaction monitoring mass spectrometry.
12 Food Chemistry, 2021, 359, 129810.
$8.2 \quad 6$

Identification of heat responsive genes in pea stipules and anthers through transcriptional profiling.
$13 \begin{aligned} & \text { Identification of heat responsive } \\ & \text { PLoS ONE, 2021, 16, e0251167. }\end{aligned}$
$2.5 \quad 4$

14 Genome-Wide Association Mapping for Heat and Drought Adaptive Traits in Pea. Genes, 2021, 12, 1897.
$2.4 \quad 11$

15 Profiling bioactive flavonoids and carotenoids in select south Indian spices and nuts. Natural
Product Research, 2020, 34, 1306-1310.
1.8

27

Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria

```
        Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica,
        2020, 216, 1.
```

$1.2 \quad 16$

Shortening the generation cycle in faba bean (Vicia faba) by application of cytokinin and cold stress
1.9

20 to assist speed breeding. Plant Breeding, 2020, 139, 1181-1189.
20
$4.1 \quad 24$
Low Phytate Peas (Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane
Functionality In Vivo (Gallus gallus). Nutrients, 2020, 12, 2563 .
24
.

Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition. Frontiers in Genetics, 2020, 11, 414.
2.3

29
Genome-Wide Association Mapping for Heat Stress Responsive Traits in Field Pea. International Journal
of Molecular Sciences, 2020, 21, 2043 .
$4.1 \quad 47$

24 Genomeâ $€$ wide association study to identify single nucleotide polymorphisms associated with Fe, Zn , and Se concentration in field pea. Crop Science, 2020, 60, 2070-2084.
1.8

15

25 Biofortification of Pulse Crops: Status and Future Perspectives. Plants, 2020, 9, 73.
3.5

121

Effect of stage of maturity at harvest for forage pea (Pisum sativum L.) on eating behavior, ruminal
26 fermentation, and digestibility when fed as hay to yearling beef heifers. Translational Animal Science, 2020, 4, 149-158.
27 Stress equation for a cantilever beam: a model of lodging resistance in field pea. International Agrophysics, 2020, 34, 213-222.
29 Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat. Plant, Cell andEnvironment, 2019, 42, 354-372.
54
Canopy architecture and leaf type as traits of heat resistance in pea. Field Crops Research, 2019, 241,107561.
5.1

25
\square
A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51,
$31 \quad$ A reference gen
21.4

363

Evaluation of Xâ€Ray Fluorescence Spectroscopy as a Tool for Nutrient Analysis of Pea Seeds. Crop
1.8

12
Science, 2019, 59, 2689-2700.

Polyphenolic Profile of Seed Components of White and Purple Flower Pea Lines. Crop Science, 2019, 59,
1.8

14

33 2711-2719.

Validation of SNP markers associated with ascochyta blight resistance in pea. Canadian Journal of
Plant Science, 2019, 99, 243-249.
Improved folate monoglutamate extraction and application to folate quantification from wild lentil
35 seeds by ultra-performance liquid chromatography-selective reaction monitoring mass spectrometry.
Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1121,
Development of a Sequence-Based Reference Physical Map of Pea (Pisum sativum L.). Frontiers in Plant

Science, 2019, 10, 323. \quad| Nutrient content and viscosity of Saskatchewan-grown pulses in relation to their cooking quality. |
| :--- |
| 38 |
| Canadian Journal of Plant Science, 2019, 99, 67-77. |$\quad 13.6$

Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum) Tj ETQq0 $0_{3.6} \mathrm{OrgBT}_{8} / \mathrm{O}_{8}$ _rlock 10

41	Genotypic and heat stress effects on leaf cuticles of field pea using ATR-FTIR spectroscopy. Planta, 2019, 249, 601-613.	3.2	22
42	Folate stability and method optimization for folate extraction from seeds of pulse crops using LC-SRM MS. Journal of Food Composition and Analysis, 2018, 71, 44-55.	3.9	23
43	Construction of high-density linkage maps for mapping quantitative trait loci for multiple traits in field pea (Pisum sativum L.). BMC Plant Biology, 2018, 18, 172.	3.6	59
44	Evaluation of Simple and Inexpensive Highâ€すhroughput Methods for Phytic Acid Determination. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 353-362.	1.9	9
45	Physicochemical and Functional Properties of Protein Isolates Obtained from Several Pea Cultivars. Cereal Chemistry, 2017, 94, 89-97.	2.2	57
46	Structure, Physicochemical Properties, and In Vitro Starch Digestibility of Yellow Pea Flour Modified with Different Organic Acids. Cereal Chemistry, 2017, 94, 142-150.	2.2	5
47	Yield and uptake of nitrogen and phosphorus in soybean, pea, and lentil, and effects on soil nutrient supply and crop yield in the succeeding year in Saskatchewan, Canada. Canadian Journal of Plant Science, 2017, , .	0.9	3
48	Impact of molecular structure on the physicochemical properties of starches isolated from different field pea (Pisum sativum L.) cultivars grown in Saskatchewan, Canada. Food Chemistry, 2017, 221, 1514-1521.	8.2	27
49	CDC Canary yellow field pea. Canadian Journal of Plant Science, 2017, ,	0.9	0

50 CDC Spruce green field pea. Canadian Journal of Plant Science, 2017, , .

Symbiosis of selected <i>Rhizobium leguminosarum</i>bv. <i>viciae</i> strains with diverse pea
genotypes: effects on biological nitrogen fixation. Canadian Journal of Microbiology, 2017, 63, 909-919.
1.7

Iron Bioavailability in Field Pea Seeds: Correlations with Iron, Phytate, and Carotenoids. Crop Science, 2017, 57, 891-902.
1.8

19

53 CHEMOTYPING USING SYNCHROTRON MID-INFRARED AND X-RAY SPECTROSCOPY TO IMPROVE
$0.9 \quad 3$

Population structure and association mapping of traits related to reproductive development in field pea. Euphytica, 2017, 213, 1.
55 Pea Phenology: Crop Potential in a Warming Environment. Crop Science, 2017, 57, 1540-1551.
$57 \quad$ CDC Athabasca yellow field pea. Canadian Journal of Plant Science, 2017, .
$0.9 \quad 0$

68 Genomic Tools in Pea Breeding Programs: Status and Perspectives. Frontiers in Plant Science, 2015, 6,
1037.

74 Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. Journal of Food Composition and Analysis, 2015, 43, 49-60.
Population structure and marker-trait association studies of iron, zinc and selenium concentrations
2.1
in seed of field pea (Pisum sativum L.). Molecular Breeding, 2015, 35, 1.

Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. Journal of Food
Composition and Analysis, 2015, 42, 134-140.
3.9

Molecular basis of processing-induced changes in protein structure in relation to intestinal
77 digestion in yellow and green type pea (Pisum sativum L.): A molecular spectroscopic analysis.
$3.9 \quad 24$
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 151, 980-988.

Effect of heat and precipitation on pea yield and reproductive performance in the field. Canadian
Journal of Plant Science, 2015, 95, 629-639.
0.9

59

79 Pea. Handbook of Plant Breeding, 2015, , 37-83.
$0.1 \quad 25$

80 Breeding Annual Grain Legumes for Sustainable Agriculture: New Methods to Approach Complex
Traits and Target New Cultivar Ideotypes. Critical Reviews in Plant Sciences, 2015, 34, 381-411.
5.7

140

81 $\begin{aligned} & \text { Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and } \\ & \text { faba bean. In Vitro Cellular and Developmental Biology - Plant, 2015, 51, 71-79. }\end{aligned}$
82 Allele diversity analysis to identify SNPs associated with ascochyta blight resistance in pea. Euphytica,
2015, 202, 189-197.
2.1

60
Effect of Cultivar and Environment on Carotenoid Profile of Pea and Chickpea. Crop Science, 2014, 54,

Genetic diversity and association mapping of iron and zinc concentrations in chickpea (<i>Cicer) Tj ETQq0 00 rgBT/Qverlock 110 Tf 502

Genotypic abundance of carotenoids and polyphenolics in the hull of field pea (<i>Pisum sativum</i>) Tj ETQq1 10,784314 rgBT /Ove

Fast track genetic improvement of ascochyta blight resistance and double podding in chickpea by marker-assisted backcrossing. Theoretical and Applied Genetics, 2013, 126, 1639-1647.
3.6

36

> Gene expression profiles of seed coats and biochemical properties of seed coats and cotyledons of
> two field pea (Pisum sativum) cultivars contrasting in green cotyledon bleaching resistance.
> Euphytica, 2013, 193,49-65.
1.2

6

Characterization of 169 diverse pea germplasm accessions for agronomic performance,
98 Mycosphaerella blight resistance and nutritional profile. Genetic Resources and Crop Evolution, 2013,
1.6

60, 747-761.
99 Didymella pinodes and its management in field pea: Challenges and opportunities. Field Crops Research,
$5.1 \quad 51$
2013, 148, 61-77.

Nutritional evaluation of low-phytate peas (<i>Pisum sativum</i>L.) for young broiler chicks. Archives of Animal Nutrition, 2013, 67, 1-14.
1.8

8
$0.9 \quad 5$
Changes in Inositol Phosphates in Low Phytic Acid Field Pea (\<i\>Pisum) Tj ETQq1 10.784314 rgBT /Overlock 10 Tf 50 ;
0.8
5

104 Identification of Mycosphaerella Blight Resistance in Wild <i>Pisum</i> Species for Use in PeaEffect of genotype and environment on the concentrations of starch and protein in, and the113 physicochemical properties of starch from, field pea and fababean. Journal of the Science of Food and3.561Agriculture, 2012, 92, 141-150.Adaptation of grain legumes to climate change: a review. Agronomy for Sustainable Development, 2012,32, 31-44.
115 Genetic control and identification of QTLs associated with visual quality traits of field pea (<i>Pisum) Tj ETQq1 10.784314 rgBT /Ove
116 Mapping QTL Associated with Traits Affecting Grain Yield in Chickpea (<i>Cicer arietinum</i> L.) underTerminal Drought Stress. Crop Science, 2011, 51, 450-463.
117 Variation in Field Pea (<i>Pisum sativum</i>) Cultivars for Basal Branching and Weed Competition.Weed Science, 2011, 59, 218-223.Yields in mixtures of resistant and susceptible field pea cultivars infested with powdery mildew â€"118 defining thresholds for a possible strategy for preserving resistance. Canadian Journal of Plant0.92Science, 2011, 91, 873-880.
119 CDC Hornet yellow field pea. Canadian Journal of Plant Science, 2011, 91, 947-949. 0.9 0
120 CDC Orion kabuli chickpea. Canadian Journal of Plant Science, 2011, 91, 355-356. 0.9 7
121 Changes in volatile flavour compounds in field pea cultivars as affected by storage conditions. 2.7 50
International Journal of Food Science and Technology, 2011, 46, 2408-2419.Volatile flavour profile changes in selected field pea cultivars as affected by crop year and8.279processing. Food Chemistry, 2011, 124, 326-335.$0.5 \quad 26$
2011, 48, 275-284.Shading, Defoliation and Light Enrichment Effects on Chickpea in Northern Latitudes. Journal of3.511Agronomy and Crop Science, 2010, 196, 220-230.Basal branching in field pea cultivars and yield-density relationships. Canadian Journal of PlantScience, 2010, 90, 679-690.

127	Effect of cultivar and environment on physicochemical and cooking characteristics of field pea (Pisum sativum). Food Chemistry, 2010, 118, 109-115.	8.2	59
128	Fine Root Distributions in Oilseed and Pulse Crops. Crop Science, 2010, 50, 222-226.	1.8	58
129	Variation in chickpea germplasm for tolerance to imazethapyr and imazamox herbicides. Canadian Journal of Plant Science, 2010, 90, 139-142.	0.9	24
130	Field Pea Seed Residue: a Potential Alternative Weed Control Agent. Weed Science, 2010, 58, 433-441.	1.5	7
131	Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.).. Canadian Journal of Plant Science, 2010, 90, 383-389.	0.9	24
132	Influence of genotype and environment on the dietary fiber content of field pea (Pisum sativum L.) grown in Canada. Food Research International, 2010, 43, 547-552.	6.2	18
133	Chickpea water use efficiency in relation to cropping system, cultivar, soil nitrogen and Rhizobial inoculation in semiarid environments. Agricultural Water Management, 2010, 97, 1375-1381.	5.6	17

134 Genetic control and QTL analysis of cotyledon bleaching resistance in green field pea (Pisum sativum) Tj ETQqO 00 OrgBT /Overlock 10 Tf

135	Effects of Planting Pattern and Fungicide Application Systems on Ascochyta Blight Control and Seed Yield in Chickpea. Agronomy Journal, 2009, 101, 1548-1555.	1.8	7
136	Seed Yield and Yield Stability of Chickpea in Response to Cropping Systems and Soil Fertility in Northern Latitudes. Agronomy Journal, 2009, 101, 1113-1122.	1.8	24
137	Trace elements in Canadian field peas: a grain safety assurance perspective. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2009, 26, 1002-1012.	2.3	24
138	Genotype and growing environment influence chickpea (<i>Cicer arietinum</i> L.) seed composition. Journal of the Science of Food and Agriculture, 2009, 89, 2052-2063.	3.5	49
139	Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (Cicer arietinum) Tj ETC	0.78	
140	Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Reports, 2009, 28, 1289-1299.	5.6	67
141	Adaptability of chickpea in northern high latitude areasâ€"Maturity responses. Agricultural and Forest Meteorology, 2009, 149, 711-720.	4.8	21
142	Improved sources of resistance to ascochyta blight in chickpea. Canadian Journal of Plant Science, 2009, 89, 107-118.	0.9	17
143	CDC Luna kabuli chickpea. Canadian Journal of Plant Science, 2009, 89, 517-518.	0.9	3
144	CDC Vanguard desi chickpea. Canadian Journal of Plant Science, 2009, 89, 519-520.	0.9	1

147	In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chemistry, 2008, 111, 316-321.	8.2	169
148	Composition, Molecular Structure, Properties, and In Vitro Digestibility of Starches from Newly Released Canadian Pulse Cultivars. Cereal Chemistry, 2008, 85, 471-479.	2.2	124
149	Construction of an Intraspecific Linkage Map and QTL Analysis for Earliness and Plant Height in Lentil. Crop Science, 2008, 48, 2254-2264.	1.8	74
150	CDC Prosper field pea. Canadian Journal of Plant Science, 2008, 88, 1097-1098.	0.9	0
151	Light interception and radiation use efficiency of fern- and unifoliate-leaf chickpea cultivars. Canadian Journal of Plant Science, 2008, 88, 1025-1034.	0.9	8

152 CDC Patrick field pea. Canadian Journal of Plant Science, 2008, 88, 1095-1096.
153 CDC Meadow field pea. Canadian Journal of Plant Science, 2007, 87, 909-910. 0.9 20
154 CDC Centennial field pea. Canadian Journal of Plant Science, 2007, 87, 907-908. 0.9 5
155
Impact of cultivar, row spacing and seeding rate on ascochyta blight severity and yield of chickpea. Canadian Journal of Plant Science, 2007, 87, 395-403. 0.9 14
Short internode, double podding and early flowering effects on maturity and other agronomic 5.1 28 characters in chickpea. Field Crops Research, 2007, 102, 43-50.
$2.0 \quad 89$repeat linkage map. Genome, 2007, 50, 26-34.89
157 Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence2.0158 New Ring Pack for Heavy Duty Diesel Engines. , 2007, , .4
159 quantitative trait Loci for resistance to Ascochyta Blight. European Journal of Plant Pathology, 2007, 1.7 9 119, 39-51.

163	Canstar field pea. Canadian Journal of Plant Science, 2006, 86, 751-752.	0.9
164	Prediction of crude protein content in field peas using near infrared reflectance spectroscopy. Canadian Journal of Plant Science, 2006, 86, 157-159.	0.9

165 CDC Sage field pea. Canadian Journal of Plant Science, 2006, 86, 161-162.

167	CDC Redberry lentil. Canadian Journal of Plant Science, 2006, 86, 497-498.	0.9	36
168	Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica, 2006, 147, 255-272.	1.2	90
169	Heritability and predicted gain from selection in components of crop duration in divergent chickpea cross populations. Euphytica, 2006, 152, 1-8.	1.2	13
170	Sources of Resistance to Anthracnose (Colletotrichum truncatum) in Wild Lens Species. Genetic Resources and Crop Evolution, 2006, 53, 111-119.	1.6	69
171	Inheritance of Time to Flowering in Chickpea in a Short-Season Temperate Environment. Journal of Heredity, 2006, 97, 55-61.	2.4	58
172	A quantitative-trait locus for resistance to ascochyta blight [<i>Ascochyta lentis</i>] maps close to a gene for resistance to anthracnose [<i>Colletotrichum truncatum</i>] in lentil. Canadian Journal of Plant Pathology, 2006, 28, 588-595.	1.4	37
173	Agassiz field pea. Canadian Journal of Plant Science, 2006, 86, 1167-1169.	0.9	6
174	Thunderbird field pea. Canadian Journal of Plant Science, 2006, 86, 1171-1173.	0.9	1
175	CDC Plato lentil. Canadian Journal of Plant Science, 2005, 85, 161-162.	0.9	4

183 Ascochyta blight of chickpea: infection and host resistance mechanisms. Canadian Journal of Plant

184 The relationships among lodging, stem anatomy, degree of lignification, and resistance to
Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in
lentil (Lens culinarisMedik). Euphytica, 2003, 134, 223-230.

Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the
190 resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theoretical and Applied
3.6

191 Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella
blight in field pea (Pisum sativum L.). Theoretical and Applied Genetics, 2003, 107, 1482-1491.

192 Morphological plasticity of chickpea in a semiarid environment. Crop Science, 2003, 43, 426.
1.8

15

193 CDC Nika desi chickpea. Canadian Journal of Plant Science, 2003, 83, 799-800.
$0.9 \quad 2$

194 CDC Anna desi chickpea. Canadian Journal of Plant Science, 2003, 83, 797-798.
0.9

11

> Response of field pea cultivars to chlorothalonil in the control of mycosphaerella blight. Canadian Journal of Plant Science, 2003, 83, 313-318.
0.9

8

Reactions of field pea varieties to three isolates of Uromyces fabae. Canadian Journal of Plant Science,
$205 \quad \begin{aligned} & \text { Partial resistance to } \\ & 2001,81,535-540 .\end{aligned}$207 Effect of mancozeb on the control of mycosphaerella blight of field pea. Canadian Journal of Plant
217 Fungicidal control of powdery mildew in field pea. Canadian Journal of Plant Science, 1996, 76, 933-935.
Protein quality of peas as influenced by location, nitrogen application and seed inoculation. Plant
Foods for Human Nutrition, 1996, 49, 93-105.

220 Genotypic variability in seedborne infection of field pea by<i>Mycosphaerella pinodes</i>and its
1.4

61 relation to foliar disease severity. Canadian Journal of Plant Pathology, 1996, 18, 370-374.

221 Fungicidal control of ascochyta blight of field pea. Canadian Journal of Plant Science, 1996, 76, 67-71.
$0.9 \quad 36$

222 Effectiveness of a detached leaf assay for determination of the reaction of pea plants to powdery mildew. Canadian Journal of Plant Pathology, 1995, 17, 87-89.
1.4

27223 Transgene copy number can be positively or negatively associated with transgene expression. Plant
Effect of promoter-leader sequences on transient reporter gene expression in particle bombarded pea
(Pisum sativum L.) tissues. Plant Science, 1992, 87, 171-177.
3.6
25

Effect of promoter-leader sequences on transient reporter gene expression in particle bombarded pea	3.6
(Pisum sativum L.) tissues. Plant Science, 1992, 87, 171-177.	

```
225
Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens) Tj ETQq1 10.78431.4 rgBT /Oyerlock
```

226 Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Reports, 1991, 10, 489-93.

227 Diclofop-methyl tolerance in cultivated oats (Avena sativa L.). Weed Research, 1988, 28, 27-35.
1.7

8

228 High Temperature Effects on in vitro Pollen Germination and Seed Set in Field Pea. Canadian Journal of Plant Science, 0, , .
0.9

7
229 Evaluation of growth and nitrogen fixation of pea nodulation mutants in western Canada. Canadian Journal of Plant Science, 0, , .
$0.9 \quad 5$

230 CDC Spectrum yellow field pea. Canadian Journal of Plant Science, 0, , .

0.9

231 CDC Inca yellow field pea. Canadian Journal of Plant Science, 0, , .
$0.9 \quad 3$

232 CDC Forest green field pea. Canadian Journal of Plant Science, 0, , .
0.9
o

233 CDC Tollefson yellow field pea. Canadian Journal of Plant Science, 0, , .
0.9

[^0]: Source: https://exaly.com/author-pdf/8645349/publications.pdf
 Version: 2024-02-01

